Machine learning for prediction of sustained opioid prescription after anterior cervical discectomy and fusion.

来自 PUBMED

作者:

Karhade AVOgink PTThio QCBSBroekman MLDCha TDHershman SHMao JPeul WCSchoenfeld AJBono CMSchwab JH

展开

摘要:

The severity of the opioid epidemic has increased scrutiny of opioid prescribing practices. Spine surgery is a high-risk episode for sustained postoperative opioid prescription. To develop machine learning algorithms for preoperative prediction of sustained opioid prescription after anterior cervical discectomy and fusion (ACDF). Retrospective, case-control study at two academic medical centers and three community hospitals. Electronic health records were queried for adult patients undergoing ACDF for degenerative disorders between January 1, 2000 and March 1, 2018. Sustained postoperative opioid prescription was defined as uninterrupted filing of prescription opioid extending to at least 90-180 days after surgery. Five machine learning models were developed to predict postoperative opioid prescription and assessed for overall performance. Of 2,737 patients undergoing ACDF, 270 (9.9%) demonstrated sustained opioid prescription. Variables identified for prediction of sustained opioid prescription were male sex, multilevel surgery, myelopathy, tobacco use, insurance status (Medicaid, Medicare), duration of preoperative opioid use, and medications (antidepressants, benzodiazepines, beta-2-agonist, angiotensin-converting enzyme-inhibitors, gabapentin). The stochastic gradient boosting algorithm achieved the best performance with c-statistic=0.81 and good calibration. Global explanations of the model demonstrated that preoperative opioid duration, antidepressant use, tobacco use, and Medicaid insurance were the most important predictors of sustained postoperative opioid prescription. One-tenth of patients undergoing ACDF demonstrated sustained opioid prescription following surgery. Machine learning algorithms could be used to preoperatively stratify risk these patients, possibly enabling early intervention to reduce the potential for long-term opioid use in this population.

收起

展开

DOI:

10.1016/j.spinee.2019.01.009

被引量:

45

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(248)

参考文献(0)

引证文献(45)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读