Effect of sulfur and sulfur-iron modified biochar on cadmium availability and transfer in the soil-rice system.
摘要:
Cadmium (Cd) contamination in paddy soils has aroused global concern. Sulfur modified biochar (BC) could combine the benefits of BC and S for Cd remediation. However, no information is available on the impact of sulfur modified biochar on Cd phytoavailability in paddy soils. In this study, a pot experiment was conducted to investigate the effect of sulfur modified biochar (S-BC) and sulfur and iron (Fe) modified biochar (S-Fe BC) on Cd mobility and Cd transfer in the soil-rice system. The application of S-BC and S-Fe BC effectively reduced pore water Cd in the rhizosphere and non-rhizosphere pore water throughout the rice growth stages. S-BC and S-Fe BC addition increased the total chlorophyll content, as well as the root, shoot and grain biomasses of rice. Furthermore, S-BC and S-Fe BC amendments greatly increase the formation of Fe plaque on rice root surface, thus decreasing Cd accumulation in different rice tissues. In particular, S-Fe BC supplementation significantly reduced the Cd concentration in rice grains to 0.018 mg kg-1 in Cd-contaminated soil, which was lower than the China National standard for food contamination limit (0.2 mg kg-1 Cd). Sequential extraction results showed that S-BC and S-Fe BC can promote the transfer of exchangeable Cd to Fe-Mn oxide, organic and residual bound forms which reduce Cd in paddy soils. Thus, the amendment of S-Fe BC to Cd-contaminated paddy soil is an effective strategy to decrease Cd accumulation in rice grains and thereby protect public health.
收起
展开
DOI:
10.1016/j.chemosphere.2019.01.149
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(1533)
参考文献(0)
引证文献(9)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无