Functional Effects of Cuprizone-Induced Demyelination in the Presence of the mTOR-Inhibitor Rapamycin.
摘要:
Persistent demyelination has been implicated in axon damage and functional deficits underlying neurodegenerative diseases such as multiple sclerosis. The cuprizone diet model of demyelination allows for the investigation of mechanisms underlying timed and reproducible demyelination and remyelination. However, spontaneous oligodendrocyte (OL) progenitor (OPC) proliferation, OPC differentiation, and axon remyelination during cuprizone diet may convolute the understanding of remyelinating events. The Akt (a serine/threonine kinase)/mTOR (the mammalian target of rapamycin) signaling pathway in OLs regulates intermediate steps during myelination. Thus, in an effort to inhibit spontaneous remyelination, the mTOR inhibitor rapamycin has been administered during cuprizone diet. Intrigued by the potential for rapamycin to optimize the cuprizone model by producing more complete demyelination, we sought to characterize the effects of rapamycin on axonal function and myelination. Functional remyelination was assessed by callosal compound action potential (CAP) recordings along with immunohistochemistry in mice treated with rapamycin during cuprizone diet. Rapamycin groups exhibited similar myelination, but significantly increased axonal damage and inflammation compared to non-rapamycin groups. There was minimal change in CAP amplitude between groups, however, a significant decrease in conduction velocity of the slower, non-myelinated CAP component was observed in the rapamycin group relative to the non-rapamycin group. During remyelination, rapamycin groups showed a significant decrease in OPC proliferation and mature OLs, suggesting a delay in OPC differentiation kinetics. In conclusion, we question the use of rapamycin to produce consistent demyelination as rapamycin increased inflammation and axonal damage, without affecting myelination.
收起
展开
DOI:
10.1016/j.neuroscience.2019.01.038
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(180)
参考文献(44)
引证文献(12)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无