Analyzing the Interactions of mRNAs and ncRNAs to Predict Competing Endogenous RNA Networks in Osteosarcoma Chemo-Resistance.

来自 PUBMED

作者:

Zhu KPZhang CLMa XLHu JPCai TZhang L

展开

摘要:

Chemo-resistance is a huge obstacle encountered in the osteosarcoma (OS) treatment. Protein-coding mRNAs, as well as non-coding RNAs (ncRNAs), including long ncRNA (lncRNA), circular RNA (circRNA), and microRNA (miRNA), have been demonstrated to play an essential role in the regulation of cancer biology. However, the comprehensive expression profile and competing endogenous RNA (ceRNA) regulatory network between mRNAs and ncRNAs in the OS chemo-resistance still remain unclear. In the current study, we developed whole-transcriptome sequencing (RNA sequencing [RNA-seq]) in the three paired multi-drug chemo-resistant and chemo-sensitive OS cell lines to comprehensively identify differentially expressed lncRNAs, circRNAs, miRNAs, and mRNAs. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed for mRNAs with significantly different expression. Then the ceRNA networks combining lncRNAs, circRNAs, miRNAs, and mRNAs were predicted and constructed on the basis of the authoritative miRanda and TargetScan databases combined with the widely accepted vital drug resistance-related genes and signal transduction pathways. In addition, two constructed ceRNA regulatory pathways, lncRNAMEG3/hsa-miR-200b-3p/AKT2 and hsa_circ_0001258/hsa-miR-744-3p/GSTM2, were randomly selected and validated by real-time qPCR, RNA immunoprecipitation (RIP), RNA pull-down assay, and dual luciferase reporter gene system. Taken together, our findings may provide new evidence for the underlying mechanism of OS chemo-resistance and uncover some novel targets for reversing it.

收起

展开

DOI:

10.1016/j.ymthe.2019.01.001

被引量:

107

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(993)

参考文献(44)

引证文献(107)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读