A novel PI3K/mTOR dual inhibitor, CMG002, overcomes the chemoresistance in ovarian cancer.
摘要:
Ovarian cancer is the leading cause of gynecologic-related mortality worldwide. Despite successful initial treatment, overall survival rates are very low because tumors develop resistance to chemotherapeutic drugs. The PI3K/mTOR pathway is a key signaling pathway involved in drug resistance of ovarian cancer cells. The aim of this study was to examine the effect of a newly developed PI3K/mTOR dual inhibitor, CMG002, on chemoresistant ovarian cancer cells. We examined the effects of CMG002, and its synergistic effects when combined with paclitaxel or cisplatin, on cell viability, cell cycle arrest, and apoptosis of PTX-resistant SKpac17 or cisplatin-resistant A2780cis ovarian cancer cells in vitro. Western blot analysis was performed to assess expression of PI3K, p-mTOR, p-Akt, p-S6, Bim, and caspase-3. In vivo studies were carried out in a xenograft mouse model, followed by TUNEL and immunohistochemical staining of excised tumor tissue. CMG002 showed marked toxicity against chemoresistant ovarian cancer cells and re-sensitized these cells to chemotherapeutic agents by suppressing cell proliferation and inducing G1 cell cycle arrest and apoptosis. In vivo xenograft studies revealed that treatment with CMG002, either alone or in combination with paclitaxel or cisplatin, led to a marked reduction in tumor growth. CMG002 caused marked suppression of mTOR (Ser2448), Akt (Ser473), Akt (Thr308), and S6 (Ser235/236) phosphorylation, both in vitro and in vivo. Taken together, CMG002, a very potent PI3K/mTOR dual inhibitor, induced cytotoxicity in chemoresistant ovarian cancer cells, suggesting that this novel inhibitor might be a new therapeutic strategy for chemoresistant ovarian cancer.
收起
展开
DOI:
10.1016/j.ygyno.2019.01.012
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(588)
参考文献(0)
引证文献(29)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无