Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants.
Soil and water contamination from heavy metals and metalloids is one of the most discussed and burning global issues due to its potential to cause the scarcity of healthy food and safe water. The scientific community is proposing a range of lab and field based physical, chemical and biological solutions to remedy metals and metalloids contaminated soils and water. The present study finds out a possibility of Chromium (Cr) extraction by sunflower from spiked soil under chelating role of citric acid (CA). The sunflower plants were grown under different concentrations of Cr (0, 5, 10 & 20mgkg-1) and CA (0, 2.5 & 5mM). Growth, biomass, gas exchange, photosynthesis, electrolyte leakage (EL), reactive oxygen species (ROS; malondialdehyde (MDA), hydrogen peroxide (H2O2) and the activities of antioxidant enzymes such as, superoxide dismutase (SOD), guaiacole values peroxidase (POD), ascorbate peroxidase (APX), catalase (CAT) were measured. The results depicted a clear decline in plant height, root length, leaf area, number of leaves and flowers per plant along with fresh and dry biomass of all parts of plant with increasing concentration of Cr in soil. Similar reduction was observed in chlorophyll a and b, total chlorophyll, carotenoids, soluble protein, gas exchange attributes and SPAD. The increasing concentration of Cr also enhanced the Cr uptake and accumulation in plant roots, stem and leaves along with the production of ROS and EL. The activities of antioxidant enzymes increased with increasing Cr concentration from 0 to 10mg, but decreased at 20mgkg-1 soil. The CA application significantly alleviated Cr-induced inhibition of plant growth, biomass, photosynthesis, gas exchange, soluble proteins and SPAD value. Presence of CA also enhanced the activities of all antioxidant enzymes and reduced the production of ROS and EL. The chelating potential of CA increased the concentration and accumulation of Cr in plant roots, stem and leaves. It is concluded that the sunflower can be a potential candidate for the remediation of Cr under CA treatment, while the possibility may vary with genotype, Cr level and CA concentration.
Farid M
,Ali S
,Rizwan M
,Ali Q
,Abbas F
,Bukhari SAH
,Saeed R
,Wu L
... -
《-》
Phyto-management of chromium contaminated soils through sunflower under exogenously applied 5-aminolevulinic acid.
Soil contamination with heavy metals is threatening the food security around the globe. Chromium (Cr) contamination results in poor quality and reduction in yield of crops. The present research was performed to figure out the Cr toxicity in sunflower and the ameliorative role of 5-aminolevulinic acid (ALA) as a plant growth regulator. The sunflower (FH-614) was grown under increasing concentration of Cr (0, 5, 10 and 20mgkg-1) alone and/or in combination with 5-ALA (0, 10 and 20mgL-1). Results showed that Cr suppressed the overall growth, biomass, gas exchange attributes and chlorophyll content of sunflower plants. Moreover, lower levels of Cr (5 and 10mgkg-1) increased the production of reactive oxygen species (ROS) and electrolyte leakage (EL) along with the activities of antioxidant enzymes i.e., superoxide dismutase (SOD), guaiacole peroxidase (POD), ascorbate (APX), catalase (CAT). But at higher concentration of Cr (20mgkg-1), the activities of these enzymes presented a declining trend. However, the addition of 5-ALA significantly alleviated the Cr-induced toxicity in sunflower plant and enhanced the plant growth and biomass parameters along with increased chlorophyll content, gas exchange attributes, soluble proteins and soil plant analysis development (SPAD) values by scavenging the ROS and lowering down the EL. The 5-ALA also enhanced the activities of antioxidant enzymes at all levels of Cr. The increase in Cr concentration in all plant parts such as leaf, root and stem was directly proportional to the Cr concentration in soil. The application of 5-ALA further enhanced the uptake of Cr and its concentration in the plants. To understand this variation in response of plants to 5-ALA, detailed studies are required on plant biochemistry and genetic modifications.
Farid M
,Ali S
,Rizwan M
,Ali Q
,Saeed R
,Nasir T
,Abbasi GH
,Rehmani MIA
,Ata-Ul-Karim ST
,Bukhari SAH
,Ahmad T
... -
《-》
5-Aminolevulinic acid mitigates the chromium-induced changes in Helianthus annuus L. as revealed by plant defense system enhancement.
Chromium (Cr) in the soil is one of the major pollutants for agricultural production. This study examined the efficiency of sunflower plants to remediate Cr-contaminated soils using a plant growth regulator, 5-aminolevolinic acid (ALA). At six leaf stage, sunflower plants were exposed to soil-applied Cr (0.15 g kg-1), manganese (Mn, 0.3 g kg-1) and trisodium (S,S)-ethylenediamine-N,N'-disuccinic acid (EDDS, 2.5 mmol kg-1), ALA (10 mg L-1) was sprayed. After ALA treatment, the plants were harvested for further biochemical analyses. Results showed that EDDS and Mn improved the Cr accumulation but restrained plant growth. Conversely, ALA improved the growth of Cr-stressed plants by promoting chlorophyll concentration in the top fully expanded leaves. The bioaccumulation quantity and removal efficiency of sunflowers treated by Cr + EDDS + ALA was improved by 47.92% and 47.94%, respectively, as compared to the Cr treatment. This was further supported by qRT-PCR analysis, where the expression of heavy metal transport genes such as ZIP6 and NRAMP6 and subsequently Cr accumulation in sunflower tissues increased by EDDS, Mn, and ALA application. However, compared with other treatments, ALA ameliorated cellular injury from Cr-stress by uptake or movement of Cr prevention, modulation of antioxidant enzymes, and elimination of reactive oxygen species. Our study suggested that ALA as an ideal option for the phytoremediation of Cr-contaminated soils.
Xu Z
,Pan J
,Ullah N
,Duan Y
,Hao R
,Li J
,Huang Q
,Xu L
... -
《-》