Fish Oil Protects Wild Type and Uncoupling Protein 1-Deficient Mice from Obesity and Glucose Intolerance by Increasing Energy Expenditure.

来自 PUBMED

摘要:

The mechanisms and involvement of uncoupling protein 1 (UCP1) in the protection from obesity and insulin resistance induced by intake of a high-fat diet rich in omega-3 (n-3) fatty acids are investigated. C57BL/6J mice are fed either a low-fat (control group) or one of two isocaloric high-fat diets containing either lard (HFD) or fish oil (HFN3) as fat source and evaluated for body weight, adiposity, energy expenditure, glucose homeostasis, and inguinal white and interscapular brown adipose tissue (iWAT and iBAT, respectively) gene expression, lipidome, and mitochondrial bioenergetics. HFN3 intake protected from obesity, glucose and insulin intolerances, and hyperinsulinemia. This is associated with increased energy expenditure, iWAT UCP1 expression, and incorporation of n-3 eicosapentaenoic and docosahexaenoic fatty acids in iWAT and iBAT triacylglycerol. Importantly, HFN3 is equally effective in reducing body weight gain, adiposity, and glucose intolerance and increasing energy expenditure in wild-type and UCP1-deficient mice without recruiting other thermogenic processes in iWAT and iBAT, such as mitochondrial uncoupling and SERCA-mediated calcium and creatine-driven substrate cyclings. Intake of a high-fat diet rich in omega-3 fatty acids protects both wild-type and UCP1-deficient mice from obesity and insulin resistance by increasing energy expenditure through unknown mechanisms.

收起

展开

DOI:

10.1002/mnfr.201800813

被引量:

13

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(800)

参考文献(0)

引证文献(13)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读