Association mapping of ectomycorrhizal traits in loblolly pine (Pinus taeda L.).

来自 PUBMED

作者:

Piculell BJJosé Martínez-García PNelson CDHoeksema JD

展开

摘要:

To understand how diverse mutualisms coevolve and how species adapt to complex environments, a description of the underlying genetic basis of the traits involved must be provided. For example, in diverse coevolving mutualisms, such as the interaction of host plants with a suite of symbiotic mycorrhizal fungi, a key question is whether host plants can coevolve independently with multiple species of symbionts, which depends on whether those interactions are governed independently by separate genes or pleiotropically by shared genes. To provide insight into this question, we employed an association mapping approach in a clonally replicated field experiment of loblolly pine (Pinus taeda L.) to identify genetic components of host traits governing ectomycorrhizal (EM) symbioses (mycorrhizal traits). The relative abundances of different EM fungi as well as the total number of root tips per cm root colonized by EM fungi were analyzed as separate mycorrhizal traits of loblolly pine. Single-nucleotide polymorphisms (SNPs) within candidate genes of loblolly pine were associated with loblolly pine mycorrhizal traits, mapped to the loblolly pine genome, and their putative protein function obtained when available. The results support the hypothesis that ectomycorrhiza formation is governed by host genes of large effect that apparently have independent influences on host interactions with different symbiont species.

收起

展开

DOI:

10.1111/mec.15013

被引量:

4

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(186)

参考文献(0)

引证文献(4)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读