Glycodelin-A stimulates the conversion of human peripheral blood CD16-CD56bright NK cell to a decidual NK cell-like phenotype.

来自 PUBMED

作者:

Lee CLVijayan MWang XLam KKWKoistinen HSeppala MLi RHWNg EHYYeung WSBChiu PCN

展开

摘要:

Does glycodelin-A (GdA) induce conversion of human peripheral blood CD16-CD56bright natural killer (NK) cells to decidual NK (dNK) cells to facilitate placentation? GdA binds to blood CD16-CD56bright NK cells via its sialylated glycans and converts them to a dNK-like cells, which in turn regulate endothelial cell angiogenesis and trophoblast invasion via vascular endothelial growth factor (VEGF) and insulin-like growth factor-binding protein 1 (IGFBP-1) secretion, respectively. dNK cells are the most abundant leucocyte population in the decidua. These cells express CD16-CD56bright phenotype. Peripheral blood CD16-CD56bright NK cells and hematopoietic precursors have been suggested to be capable of differentiating towards dNK cells upon exposure to the decidual microenvironment. These cells regulate trophoblast invasion during spiral arteries remodelling and mediate homoeostasis and functions of the endothelial cells. GdA is an abundant glycoprotein in the human decidua with peak expression between the 6th and 12th week of gestation, suggesting a role in early pregnancy. Indeed, GdA interacts with and modulates functions and differentiation of trophoblast and immune cells in the human feto-maternal interface. Aberrant GdA expression during pregnancy is associated with unexplained infertility, pregnancy loss and pre-eclampsia. CD16+CD56dim, CD16-CD56bright and dNK cells were isolated from human peripheral blood and decidua tissue, respectively, by immuno-magnetic beads or fluorescence-activated cell sorting. Human extravillous trophoblasts were isolated from first trimester placental tissue after termination of pregnancy. Biological activities of the cells were studied after treatment with GdA at a physiological dose of 5 μg/mL. GdA was purified from human amniotic fluid by immuno-affinity chromatography. Expression of VEGF, CD9, CD49a, CD151 and CD158a in the cells were determined by flow cytometry. Angiogenic proteins in the spent media of NK cells were determined by cytokine array and ELISA. Blocking antibodies were used to study the functions of the identified angiogenic proteins. Endothelial cell angiogenesis was determined by tube formation and trans-well migration assays. Cell invasion and migration were determined by trans-well invasion/migration assay. Binding of normal and de-sialylated GdA, and expression of L-selectin and siglec-7 on the NK cells were analysed by flow cytometry. The association between GdA and L-selectin on NK cells was confirmed by immunoprecipitation. Extracellular signal-regulated protein kinases (ERK) activation was determined by Western blotting and functional assays. GdA treatment enhanced the expression of dNK cell markers CD9 and CD49a and the production of the functional dNK secretory product VEGF in the peripheral blood CD16-CD56bright NK cells. The spent media of GdA-treated CD16-CD56bright NK cells promoted tube formation of human umbilical vein endothelial cells and invasiveness of trophoblasts. These stimulatory effects were mediated by the stimulatory activities of GdA on an ERK-activation dependent production of VEGF and IGFBP-1 by the NK cells. GdA had a stronger binding affinity to the CD16-CD56bright NK cells as compared to the CD16+CD56dim NK cells. This GdA-NK cell interaction was reduced by de-sialylation. GdA interacted with L-selectin, expressed only in the CD16-CD56bright NK cells, but not in the CD16+CD56dim NK cells. Anti-L-selectin functional blocking antibody suppressed the binding and biological activities of GdA on the NK cells. N/A. Some of the above findings are based on a small sample size of peripheral blood CD16-CD56bright NK cells. These results need to be confirmed with human primary dNK cells. This is the first study on the biological role of GdA on conversion of CD16-CD56bright NK cells to dNK-like cells. Further investigation on the glycosylation and functions of GdA will enhance our understanding on human placentation and placenta-associated complications with altered NK cell biology. This work was supported by the Hong Kong Research Grant Council Grant 17122415, Sanming Project of Medicine in Shenzhen, the Finnish Cancer Foundation, Sigrid Jusélius Foundation and the Finnish Society of Clinical Chemistry. The authors have no competing interests to declare.

收起

展开

DOI:

10.1093/humrep/dey378

被引量:

18

年份:

2019

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(857)

参考文献(0)

引证文献(18)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读