Long QT syndrome caveolin-3 mutations differentially modulate K(v) 4 and Ca(v) 1.2 channels to contribute to action potential prolongation.

来自 PUBMED

作者:

Tyan LFoell JDVincent KPWoon MTMesquitta WTLang DBest JMAckerman MJMcCulloch ADGlukhov AVBalijepalli RCKamp TJ

展开

摘要:

Mutations in the caveolae scaffolding protein, caveolin-3 (Cav3), have been linked to the long QT type 9 inherited arrhythmia syndrome (LQT9) and the cause of underlying action potential duration prolongation is incompletely understood. In the present study, we show that LQT9 Cav3 mutations, F97C and S141R, cause mutation-specific gain of function effects on Cav 1.2-encoded L-type Ca2+ channels responsible for ICa,L and also cause loss of function effects on heterologously expressed Kv 4.2 and Kv 4.3 channels responsible for Ito . A computational model of the human ventricular myocyte action potential suggests that the major ionic current change causing action potential duration prolongation in the presence of Cav3-F97C is the slowly inactivating ICa,L but, for Cav3-S141R, both increased ICa,L and increased late Na+ current contribute equally to action potential duration prolongation. Overall, the LQT9 Cav3-F97C and Cav3-S141R mutations differentially impact multiple ionic currents, highlighting the complexity of Cav3 regulation of cardiac excitability and suggesting mutation-specific therapeutic approaches. Mutations in the CAV3 gene encoding caveolin-3 (Cav3), a scaffolding protein integral to caveolae in cardiomyocytes, have been associated with the congenital long-QT syndrome (LQT9). Initial studies demonstrated that LQT9-associated Cav3 mutations, F97C and S141R, increase late sodium current as a potential mechanism to prolong action potential duration (APD) and cause LQT9. Whether these Cav3 LQT9 mutations impact other caveolae related ion channels remains unknown. We used the whole-cell, patch clamp technique to characterize the effect of Cav3-F97C and Cav3-S141R mutations on heterologously expressed Cav 1.2+Cav β2cN4 channels, as well as Kv 4.2 and Kv 4.3 channels, in HEK 293 cells. Expression of Cav3-S141R increased ICa,L density without changes in gating properties, whereas expression of Cav3-F97C reduced Ca2+ -dependent inactivation of ICa,L without changing current density. The Cav3-F97C mutation reduced current density and altered the kinetics of IKv4.2 and IKv4.3 and also slowed recovery from inactivation. Cav3-S141R decreased current density and also slowed activation kinetics and recovery from inactivation of IKv4.2 but had no effect on IKv4.3 . Using the O'Hara-Rudy computational model of the human ventricular myocyte action potential, the Cav3 mutation-induced changes in Ito are predicted to have negligible effect on APD, whereas blunted Ca2+ -dependent inactivation of ICa,L by Cav3-F97C is predicted to be primarily responsible for APD prolongation, although increased ICa,L and late INa by Cav3-S141R contribute equally to APD prolongation. Thus, LQT9 Cav3-associated mutations, F97C and S141R, produce mutation-specific changes in multiple ionic currents leading to different primary causes of APD prolongation, which suggests the use of mutation-specific therapeutic approaches in the future.

收起

展开

DOI:

10.1113/JP276014

被引量:

17

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(192)

参考文献(46)

引证文献(17)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读