Robust optimization for intensity-modulated proton therapy with soft spot sensitivity regularization.

来自 PUBMED

作者:

Gu WRuan DO'Connor DZou WDong LTsai MYJia XSheng K

展开

摘要:

Proton dose distribution is sensitive to uncertainties in range estimation and patient positioning. Currently, the proton robustness is managed by worst-case scenario optimization methods, which are computationally inefficient. To overcome these challenges, we develop a novel intensity-modulated proton therapy (IMPT) optimization method that integrates dose fidelity with a sensitivity term that describes dose perturbation as the result of range and positioning uncertainties. In the integrated optimization framework, the optimization cost function is formulated to include two terms: a dose fidelity term and a robustness term penalizing the inner product of the scanning spot sensitivity and intensity. The sensitivity of an IMPT scanning spot to perturbations is defined as the dose distribution variation induced by range and positioning errors. To evaluate the sensitivity, the spatial gradient of the dose distribution of a specific spot is first calculated. The spot sensitivity is then determined by the total absolute value of the directional gradients of all affected voxels. The fast iterative shrinkage-thresholding algorithm is used to solve the optimization problem. This method was tested on three skull base tumor (SBT) patients and three bilateral head-and-neck (H&N) patients. The proposed sensitivity-regularized method (SenR) was implemented on both clinic target volume (CTV) and planning target volume (PTV). They were compared with conventional PTV-based optimization method (Conv) and CTV-based voxel-wise worst-case scenario optimization approach (WC). Under the nominal condition without uncertainties, the three methods achieved similar CTV dose coverage, while the CTV-based SenR approach better spared organs at risks (OARs) compared with the WC approach, with an average reduction of [Dmean, Dmax] of [4.72, 3.38]  GyRBE for the SBT cases and [2.54, 3.33] GyRBE for the H&N cases. The OAR sparing of the PTV-based SenR method was comparable with the WC method. The WC method, and SenR approaches all improved the plan robustness from the conventional PTV-based method. On average, under range uncertainties, the lowest [D95%, V95%, V100%] of CTV were increased from [93.75%, 88.47%, 47.37%] in the Conv method, to [99.28%, 99.51%, 86.64%] in the WC method, [97.71%, 97.85%, 81.65%] in the SenR-CTV method and [98.77%, 99.30%, 85.12%] in the SenR-PTV method, respectively. Under setup uncertainties, the average lowest [D95%, V95%, V100%] of CTV were increased from [95.35%, 94.92%, 65.12%] in the Conv method, to [99.43%, 99.63%, 87.12%] in the WC method, [96.97%, 97.13%, 77.86%] in the SenR-CTV method, and [98.21%, 98.34%, 83.88%] in the SenR-PTV method, respectively. The runtime of the SenR optimization is eight times shorter than that of the voxel-wise worst-case method. We developed a novel computationally efficient robust optimization method for IMPT. The robustness is calculated as the spot sensitivity to both range and shift perturbations. The dose fidelity term is then regularized by the sensitivity term for the flexibility and trade-off between the dosimetry and the robustness. In the stress test, SenR is more resilient to unexpected uncertainties. These advantages in combination with its fast computation time make it a viable candidate for clinical IMPT planning.

收起

展开

DOI:

10.1002/mp.13344

被引量:

10

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(315)

参考文献(35)

引证文献(10)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读