Combination of everolimus with trastuzumab plus paclitaxel as first-line treatment for patients with HER2-positive advanced breast cancer (BOLERO-1): a phase 3, randomised, double-blind, multicentre trial.
mTOR inhibition reverses trastuzumab resistance via the hyperactivated PIK/AKT/mTOR pathway due to PTEN loss, by sensitising PTEN-deficient tumours to trastuzumab. The BOLERO-1 study assessed the efficacy and safety of adding everolimus to trastuzumab and paclitaxel as first-line treatment for patients with HER2-positive advanced breast cancer.
In this phase 3, randomised, double-blind trial, patients were enrolled across 141 sites in 28 countries. Eligible patients were aged 18 years or older, with locally assessed HER2-positive advanced breast cancer, with Eastern Cooperative Oncology Group (ECOG) performance status of 0-1, who had not received previous trastuzumab or chemotherapy for advanced breast cancer within 12 months of randomisation, had measurable disease as per Response Evaluation Criteria in Solid Tumors (RECIST) or bone lesions in the absence of measurable disease, without previous systemic treatment for advanced disease except endocrine therapy. Patients were randomly assigned (2:1) with an interactive voice and web response system to receive either 10 mg everolimus once a day orally or placebo plus weekly trastuzumab intravenously at 4 mg/kg loading dose on day 1 with subsequent weekly doses of 2 mg/kg of each 4 week cycle plus paclitaxel intravenously at a dose of 80 mg/m(2) on days 1, 8, and 15 of each 4 week cycle. Randomisation was stratified according to previous use of trastuzumab and visceral metastasis. Patients and investigators were masked to the assigned treatments. Identity of experimental treatments was concealed by use of everolimus and placebo that were identical in packaging, labelling, appearance, and administration schedule. The two primary objectives were investigator-assessed progression-free survival in the full study population and in the subset of patients with hormone receptor-negative breast cancer at baseline; the latter was added during the course of the study, before unmasking based on new clinical and biological findings from other studies. All efficacy analyses were based on the intention-to-treat population. Enrolment for this trial is closed and results of the final progression-free survival analyses are presented here. This trial is registered with ClinicalTrials.gov, number NCT00876395.
Between Sept 10, 2009, and Dec 16, 2012, 719 patients were randomly assigned to receive everolimus (n=480) or placebo (n=239). Median follow-up was 41·3 months (IQR 35·4-46·6). In the full population, median progression-free survival was 14·95 months (95% CI 14·55-17·91) with everolimus versus 14·49 months (12·29-17·08) with placebo (hazard ratio 0·89, 95% CI 0·73-1·08; p=0·1166). In the HR-negative subpopulation (n=311), median progression-free survival with everolimus was 20·27 months (95% CI 14·95-24·08) versus 13·08 months (10·05-16·56) with placebo (hazard ratio 0·66, 95% CI 0·48-0·91; p=0·0049); however, the protocol-specified significance threshold (p=0·0044) was not crossed. The most common adverse events with everolimus were stomatitis (314 [67%] of 472 patients in the everolimus group vs 77 [32%] of 238 patients in the placebo group), diarrhoea (267 [57%] vs 111 [47%] patients), and alopecia (221 [47%] vs 125 [53%]). The most frequently reported grade 3 or 4 adverse events in the everolimus group versus the placebo group were neutropenia (117 [25%] vs 35 [15%]), stomatitis (59 [13%] vs three [1%]), anaemia (46 [10%] vs six [3%]) and diarrhoea (43 [9%] vs 10 [4%]) On-treatment adverse event-related deaths were reported in 17 (4%) patients in the everolimus group and none in the placebo group.
Although progression-free survival was not significantly different between groups in the full analysis population, the 7·2 months prolongation we noted with the addition of everolimus in the HR-negative, HER2-positive population warrants further investigation, even if it did not meet prespecified criteria for significance. The safety profile was generally consistent with what was previously reported in BOLERO-3. Proactive monitoring and early management of adverse events in patients given everolimus and chemotherapy is crucial.
Novartis Pharmaceuticals.
Hurvitz SA
,Andre F
,Jiang Z
,Shao Z
,Mano MS
,Neciosup SP
,Tseng LM
,Zhang Q
,Shen K
,Liu D
,Dreosti LM
,Burris HA
,Toi M
,Buyse ME
,Cabaribere D
,Lindsay MA
,Rao S
,Pacaud LB
,Taran T
,Slamon D
... -
《-》
Efficacy and safety of ABP 980 compared with reference trastuzumab in women with HER2-positive early breast cancer (LILAC study): a randomised, double-blind, phase 3 trial.
ABP 980 (Amgen Inc, Thousand Oaks, CA, USA) is a biosimilar of trastuzumab, with analytical, functional, and pharmacokinetic similarities. We compared the clinical safety and efficacy of ABP 980 with that of trastuzumab in women with HER2-positive early breast cancer.
We did a randomised, multicentre, double-blind, active-controlled equivalence trial at 97 study centres in 20 countries, mainly in Europe and South America. Eligible women were aged 18 years or older, had histologically confirmed HER2-positive invasive early breast cancer, an Eastern Cooperative Oncology Group performance status score of 0 or 1, and were planning to have surgical resection of the breast tumour with sentinel or axillary lymph node dissection and neoadjuvant chemotherapy. After four cycles of run-in anthracycline-based chemotherapy, patients were assigned 1:1 to receive ABP 980 or trastuzumab with a permuted block design (blocks of four) computer-generated randomisation schedule. Patients received neoadjuvant therapy with a loading dose (8 mg/kg) of ABP 980 or trastuzumab plus paclitaxel 175 mg/m2 in a 90 min intravenous infusion, followed by three cycles of 6 mg/kg intravenous ABP 980 or trastuzumab plus paclitaxel 175 mg/m2 every 3 weeks in 30 min intravenous infusions (or 80 mg/m2 paclitaxel once per week for 12 cycles if that was the local standard of care). Randomisation was stratified by T stage, node status, hormone receptor status, planned paclitaxel dosing schedule, and geographical region. Surgery was completed 3-7 weeks after the last dose of neoadjuvant treatment, after which adjuvant treatment with ABP 980 or trastuzumab was given every 3 weeks for up to 1 year after the first dose in the study. Patients had been randomly assigned at baseline to continue APB 980, continue trastuzumab, or switch from trastuzumab to APB 980 as their adjuvant treatment. The co-primary efficacy endpoints were risk difference and risk ratio (RR) of pathological complete response in breast tissue and axillary lymph nodes assessed at a local laboratory in all patients who were randomly assigned and received any amount of neoadjuvant investigational product and underwent surgery. We assessed safety in all patients who were randomly assigned and received any amount of investigational product. This trial is registered with ClinicalTrials.gov, number NCT01901146 and Eudra, number CT 2012-004319-29.
Of 827 patients enrolled, 725 were randomly assigned to receive ABP 980 (n=364) or trastuzumab (n=361). The primary endpoint was assessable in 696 patients (358 who received ABP 980 and 338 who received trastuzumab). Pathological complete response was recorded in 172 (48%, 95% CI 43-53) of 358 patients in the ABP 980 group and 137 (41%, 35-46) of 338 in the trastuzumab group (risk difference 7·3%, 90% CI 1·2-13·4; RR 1·188, 90% CI 1·033-1·366), with the upper bounds of the CIs exceeding the predefined equivalence margins of 13% and 1·318, respectively. Pathological complete response in the central laboratory assessment was seen in 162 (48%) of 339 patients assigned to ABP 980 at baseline and 138 (42%) of 330 assigned to trastuzumab at baseline (risk difference 5·8%, 90% CI -0·5 to 12·0, and RR 1·142, 90% CI 0·993 to 1·312). Grade 3 or worse adverse events during the neoadjuvant phase occurred in 54 (15%) of 364 patients in the ABP 980 group and 51 (14%) of 361 patients in the trastuzumab group, of which the most frequent grade 3 or worse event of interest was neutropenia, occurring in 21 (6%) patients in both groups. In the adjuvant phase, grade 3 or worse adverse events occurred in 30 (9%) of 349 patients continuing ABP 980, 11 (6%) of 171 continuing trastuzumab, and 13 (8%) of 171 who switched from trastuzumab to ABP 980, the most frequent grade 3 or worse events of interest were infections and infestations (four [1%], two [1%], and two [1%]), neutropenia (three [1%], two [1%], and one [1%]), and infusion reactions (two [1%], two [1%], and three [2%]). Two patients died from adverse events judged to be unrelated to the investigational products: one died from pneumonia while receiving neoadjuvant ABP 980 and one died from septic shock while receiving adjuvant ABP 980 after trastuzumab.
Although the lower bounds of the 90% CIs for RR and risk difference showed non-inferiority, the upper bounds exceeded the predefined equivalence margins when based on local laboratory review of tumour samples, meaning that non-superiority was non-conclusive. In our sensitivity analyses based on central laboratory evaluation of tumour samples, estimates for the two drugs were contained within the predefined equivalence margins, indicating similar efficacy. ABP 980 and trastuzumab had similar safety outcomes in both the neoadjuvant and adjuvant phases of the study.
Amgen.
von Minckwitz G
,Colleoni M
,Kolberg HC
,Morales S
,Santi P
,Tomasevic Z
,Zhang N
,Hanes V
... -
《-》