-
Prevalence of trypanosomes, salivary gland hypertrophy virus and Wolbachia in wild populations of tsetse flies from West Africa.
Tsetse flies are vectors of African trypanosomes, protozoan parasites that cause sleeping sickness (or human African trypanosomosis) in humans and nagana (or animal African trypanosomosis) in livestock. In addition to trypanosomes, four symbiotic bacteria Wigglesworthia glossinidia, Sodalis glossinidius, Wolbachia, Spiroplasma and one pathogen, the salivary gland hypertrophy virus (SGHV), have been reported in different tsetse species. We evaluated the prevalence and coinfection dynamics between Wolbachia, trypanosomes, and SGHV in four tsetse species (Glossina palpalis gambiensis, G. tachinoides, G. morsitans submorsitans, and G. medicorum) that were collected between 2008 and 2015 from 46 geographical locations in West Africa, i.e. Burkina Faso, Mali, Ghana, Guinea, and Senegal.
The results indicated an overall low prevalence of SGHV and Wolbachia and a high prevalence of trypanosomes in the sampled wild tsetse populations. The prevalence of all three infections varied among tsetse species and sample origin. The highest trypanosome prevalence was found in Glossina tachinoides (61.1%) from Ghana and in Glossina palpalis gambiensis (43.7%) from Senegal. The trypanosome prevalence in the four species from Burkina Faso was lower, i.e. 39.6% in Glossina medicorum, 18.08%; in Glossina morsitans submorsitans, 16.8%; in Glossina tachinoides and 10.5% in Glossina palpalis gambiensis. The trypanosome prevalence in Glossina palpalis gambiensis was lowest in Mali (6.9%) and Guinea (2.2%). The prevalence of SGHV and Wolbachia was very low irrespective of location or tsetse species with an average of 1.7% for SGHV and 1.0% for Wolbachia. In some cases, mixed infections with different trypanosome species were detected. The highest prevalence of coinfection was Trypanosoma vivax and other Trypanosoma species (9.5%) followed by coinfection of T. congolense with other trypanosomes (7.5%). The prevalence of coinfection of T. vivax and T. congolense was (1.0%) and no mixed infection of trypanosomes, SGHV and Wolbachia was detected.
The results indicated a high rate of trypanosome infection in tsetse wild populations in West African countries but lower infection rate of both Wolbachia and SGHV. Double or triple mixed trypanosome infections were found. In addition, mixed trypanosome and SGHV infections existed however no mixed infections of trypanosome and/or SGHV with Wolbachia were found.
Ouedraogo GMS
,Demirbas-Uzel G
,Rayaisse JB
,Gimonneau G
,Traore AC
,Avgoustinos A
,Parker AG
,Sidibe I
,Ouedraogo AG
,Traore A
,Bayala B
,Vreysen MJB
,Bourtzis K
,Abd-Alla AMM
... -
《BMC MICROBIOLOGY》
-
Symbiotic bacteria Sodalis glossinidius, Spiroplasma sp and Wolbachia do not favour Trypanosoma grayi coexistence in wild population of tsetse flies collected in Bobo-Dioulasso, Burkina Faso.
Tsetse flies, the biological vectors of African trypanosomes, have established symbiotic associations with different bacteria. Their vector competence is suggested to be affected by bacterial endosymbionts. The current study provided the prevalence of three tsetse symbiotic bacteria and trypanosomes in Glossina species from Burkina Faso.
A total of 430 tsetse flies were captured using biconical traps in four different collection sites around Bobo-Dioulasso (Bama, Bana, Nasso, and Peni), and their guts were removed. Two hundred tsetse were randomly selected and their guts were screened by PCR for the presence of Sodalis glossinidius, Spiroplasma sp., Wolbachia and trypanosomes. Of the 200 tsetse, 196 (98.0%) were Glossina palpalis gambiensis and 4 (2.0%) Glossina tachinoides. The overall symbiont prevalence was 49.0%, 96.5%, and 45.0%, respectively for S. glossinidius, Spiroplasma and Wolbachia. Prevalence varied between sampling locations: S. glossinidius (54.7%, 38.5%, 31.6%, 70.8%); Spiroplasma (100%, 100%, 87.7%, 100%); and Wolbachia (43.4%, 38.5%, 38.6%, 70.8%), respectively in Bama, Bana, Nasso and Peni. Noteworthy, no G. tachnoides was infected by S. glossinidius and Wolbachia, but they were all infected by Spiroplasma sp. A total of 196 (98.0%) harbored at least one endosymbionts. Fifty-five (27.5%) carried single endosymbiont. Trypanosomes were found only in G. p. gambiensis, but not G. tachinoides. Trypanosomes were present in flies from all study locations with an overall prevalence of 29.5%. In Bama, Bana, Nasso, and Peni, the trypanosome infection rate was respectively 39.6%, 23.1%, 8.8%, and 37.5%. Remarkably, only Trypanosoma grayi was present. Of all trypanosome-infected flies, 55.9%, 98.3%, and 33.9% hosted S. glossinidius, Spiroplasma sp and Wolbachia, respectively. There was no association between Sodalis, Spiroplasma and trypanosome presence, but there was a negative association with Wolbachia presence. We reported 1.9 times likelihood of trypanosome absence when Wolbachia was present.
This is the first survey reporting the presence of Trypanosoma grayi in tsetse from Burkina Faso. Tsetse from these localities were highly positive for symbiotic bacteria, more predominantly with Spiroplasma sp. Modifications of symbiotic interactions may pave way for disease control.
Mfopit YM
,Bilgo E
,Boma S
,Somda MB
,Gnambani JE
,Konkobo M
,Diabate A
,Dayo GK
,Mamman M
,Kelm S
,Balogun EO
,Shuaibu MN
,Kabir J
... -
《BMC MICROBIOLOGY》
-
Prevalence of symbionts and trypanosome infections in tsetse flies of two villages of the "Faro and Déo" division of the Adamawa region of Cameroon.
Tsetse flies are vectors of human and animal African trypanosomiasis. In spite of many decades of chemotherapy and vector control, the disease has not been eradicated. Other methods like the transformation of tsetse fly symbionts to render the fly refractory to trypanosome infection are being evaluated. The aim of the present study was to evaluate the association between trypanosome infections and the presence of symbionts in these tsetse species. Tsetse flies were trapped in two villages of the "Faro and Déo" Division of the Adamawa region of Cameroon. In the field, tsetse fly species were identified and their infection by trypanosomes was checked by microscopy. In the laboratory, DNA was extracted from their midguts and the presence of symbionts (Sodalis glossinidius and Wolbachia sp.) and trypanosomes was checked by PCR. Symbionts/trypanosomes association tests were performed.
Three tsetse fly species including Glossina tachinoides (90.1%), Glossina morsitans submorsitans (9.4%) and Glossina fuscipes fuscipes (0.5%) were caught. In all the population we obtained an occurrence rate of 37.2% for Sodalis glossinidius and 67.6% for Wolbachia irrespective to tsetse flies species. S. glossinidius and Wolbachia sp. occurrence rates were respectively 37 and 68% for G. tachinoides and 28.6 and 59.5% for G. m. submorsitans. Between Golde Bourle and Mayo Dagoum significant differences were observed in the prevalence of symbionts. Prevalence of trypanosomes were 34.8% for Glossina tachinoides and 40.5% for Glossina morsitans submorsitans. In G. tachinoides, the trypanosome infection rates were 11, 2.6 and 13.7%, respectively, for T. brucei s.l., T. congolense forest type and T. congolense savannah type. In G. m. submorsitans, these infection rates were 16.7, 9.5 and, 2.4% respectively, for T. brucei s.l., T. congolense forest type and T. congolense savannah type.
The rate of tsetse fly infection by trypanosomes was low compared to those obtained in HAT foci of south Cameroon, and this rate was not statistically linked to the rate of symbiont occurrence. This study allowed to show for the first time the presence of Wolbachia sp. in the tsetse fly sub-species Glossina morsitans submorsitans and Glossina tachinoides.
Kame-Ngasse GI
,Njiokou F
,Melachio-Tanekou TT
,Farikou O
,Simo G
,Geiger A
... -
《BMC MICROBIOLOGY》
-
Microbiome frequency and their association with trypanosome infection in male Glossina morsitans centralis of Western Zambia.
Tsetse flies (Diptera: Glossinidae) are considered primary cyclical vectors that transmit pathogenic trypanosomes in Africa. They harbour a variety of microbes including Wolbachia, Sodalis and the salivary gland hypertrophy virus (SGHV) which are all vertically transmitted. Knowledge on tsetse microbiome and their interactions may identify novel strategies for tsetse fly and trypanosomiasis control. Area-wide application of such strategies requires an understanding of the natural microbiome frequency in the different species and subspecies of Glossina in their geographical populations. Consequently, this study determined the prevalence of Sodalis, Wolbachia, SGHV and trypanosome infections in Glossina morsitanscentralis from two sites of Western Zambia. We also explored possible associations of the microbes with trypanosome infections. Male G. morsitanscentralis samples were collected from two sites (Lyoni and Lusinina) in Western Zambia. The age structure of the flies at each site was determined using the wing fray method. DNA was extracted from the samples and analyzed for Wolbachia, Sodalis, SGHV and trypanosome presence using PCR. Associations and measures of associations between trypanosome infection and microbes in the fly were determined. The flies from the two locations (Lusinina, n=45 and Lyoni, n=24) had a similar age structure with their median fray category not being significantly different (p=0.698). The overall prevalence of Wolbachia was 72.5% (95% CI: 61.6-83.3%), Sodalis was 15.9% (95% CI: 7.1-24.8%), SGHV was 31.9% (95% CI: 20.6-43.2%) and Trypanosoma species was 23.2% (95% CI: 13-33.4%). The prevalence of Wolbachia was significantly higher in Lusinina than Lyoni (p=0.000). However this was not the case for Sodalis, SGHV and Trypanosoma species. Despite the low number of flies that were positive for both trypanosome and Sodalis (6; 8.7%), a statistically significant association (p=0.013; AOR 6.2; 95% CI: 1.5-25.8) was observed in G. morsitanscentralis. The study showed that the prevalence of microbiota may vary within the same species of the tsetse depending on the geographical location as was the case of Wolbachia. Further it showed that infection with Sodalis could affect vector competence. The study concludes that Sodalis could be an ideal candidate for symbiont-mediated trypanosomiasis control interventions in G. morsitanscentralis.
Mbewe NJ
,Mweempwa C
,Guya S
,Wamwiri FN
... -
《-》
-
Detection of Wolbachia and different trypanosome species in Glossina palpalis palpalis populations from three sleeping sickness foci of southern Cameroon.
African trypanosomiases are caused by trypanosomes that are cyclically transmitted by tsetse. Investigations aiming to generate knowledge on the bacterial fauna of tsetse have revealed distinct symbiotic microorganisms. Furthermore, studies addressing the tripartite association between trypanosomes-tsetse-symbionts relationship have so far been contradictory. Most studies included Sodalis glossinudius and, consequently, the association involving Wolbachia is poorly understood. Understanding the vectorial competence of tsetse requires decrypting these tripartite associations. In this study, we identified Wolbachia and trypanosomes in Glossina palpalis palpalis from three human African trypanosomiasis (HAT) foci in southern Cameroon.
Tsetse flies were captured with pyramidal traps in the Bipindi, Campo and Fontem HAT foci. After morphological identification, DNA was extracted from whole tsetse flies and Wolbachia and trypanosomes were identified by PCR using different trypanosome-specific primers and two Wolbachia-specific primers (Wolbachia surface protein and 16S rRNA genes). Statistical analyses were performed to compare the trypanosome and Wolbachia infection rates between villages and different foci and to look for an association between these microorganisms.
From a total of 2122 tsetse flies, 790 G. p. palpalis were analyzed. About 25.32% of flies hosted Wolbachia and 31.84% of non-teneral flies were infected by at least one trypanosome species. There was no significant difference between the global Wolbachia prevalence revealed by the two markers while some differences were observed between HAT foci. From 248 G. p. palpalis with trypanosome infections, 62.90% were with T. vivax, 34.68% with T. congolense forest, 16.13% with T. brucei (s.l.) and 2.42% with T. congolense savannah. Of all trypanosome-infected flies, 29.84% hosted Wolbachia and no association was observed between Wolbachia and trypanosome co-infections.
This study revealed differences in the prevalence of Wolbachia and trypanosomes in G. p. palpalis according to HAT foci. The use of only one marker has underestimated the prevalence of Wolbachia, thus more markers in subsequent studies may improve its detection. The presence of Wolbachia seems to have no impact on the establishment of trypanosomes in G. p. palpalis. The tripartite association between tsetse, Wolbachia and trypanosomes varies according to studied areas. Studies aiming to evaluate the genetic polymorphism of Wolbachia and its density in tsetse flies could help to better understand this association.
Kanté ST
,Melachio T
,Ofon E
,Njiokou F
,Simo G
... -
《Parasites & Vectors》