Acyl-CoA synthetase-4 is implicated in drug resistance in breast cancer cell lines involving the regulation of energy-dependent transporter expression.

来自 PUBMED

作者:

Orlando UDCastillo AFMedrano MARSolano ARMaloberti PMPodesta EJ

展开

摘要:

Acyl-CoA synthetase-4 (ACSL4) is an enzyme implicated in estrogen receptor α (ERα) negative regulation and hormone therapy resistance in breast cancer. In addition, ACSL4 has been associated to certain types of hormone resistance in prostate cancer. Chemotherapeutic treatment of disseminated breast cancer is usually faced with therapy resistance associated to ATP-binding cassette (ABC) transporter expression, which detect and eject anti-cancer drugs from cells. In this context, the aim of the present work was to study the role of ACSL4 in anti-cancer drug resistance and the involvement of ABC transporters in the underlying mechanisms. To this end, we used MCF-7 Tet-Off/ACSL4 and MDA-MB-231 mock cells, which overexpress ACSL4, and control line MCF-7 Tet-Off empty vector, MDA-MB-231 shRNA ACSL4 and MDA-MB-231 wild type cells. Assays were conducted on cell viability (MTT), cell proliferation (BrdU), drug efflux (flow cytometry), ACSL4-responsive drug resistance ABC transporter genes (RNA-Seq), transporter mRNA expression, protein levels and signaling pathway participation (real-time PCR and Western blot). Higher survival rates upon chemotherapeutic treatment were obtained in MCF-7 Tet-Off/ACSL4 and MDA-MB-231 mock cells, an effect counteracted by doxycycline- or shRNA-induced ACSL4 inhibition, respectively. A synergic effect of ACSL4 inhibitor triacsin C and chemotherapeutic drugs was observed on the inhibition of MDA-MB-231 wild type cell proliferation. MCF-7 Tet-Off/ACSL4 cells showed greater doxorubicin, Hoechst 33342 and calcein AM efflux. In contrast, MDA-MB-231 shRNA ACSL4 cells evidenced inhibition of chemotherapeutic drug efflux. ABCG2, ABCC4, and ABCC8 were identified as ACSL4-responsive drug resistance genes whose expression was increased in MCF-7 Tet-Off/ACSL4 cells but inhibited in MDA-MB-231 shRNA ACSL4 cells. Further cell survival assays in the presence of Ko 143 and Ceefourin 1, inhibitors of ABCG2 and ABCC4, respectively, upon chemotherapeutic treatment showed greater participation of ABCG2 in anti-cancer drug resistance in cells overexpressing ACSL4. In addition, ACSL4 inhibition and chemotherapeutic treatment combined with rapamycin-induced mTOR inhibition synergically inhibited proliferation and reduced ABCG2 expression in cells overexpressing ACSL4. In sum, ACSL4 may be regarded as a novel therapeutic target regulating the expression of transporters involved in anticancer drug resistance through the mTOR pathway to restore drug sensitivity in tumors with poor prognosis for disease-free and overall survival.

收起

展开

DOI:

10.1016/j.bcp.2018.11.005

被引量:

38

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(757)

参考文献(0)

引证文献(38)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读