Whole-plant frost hardiness of mycorrhizal (Hebeloma sp. or Suillus luteus) and non-mycorrhizal Scots pine seedlings.

来自 PUBMED

作者:

Korhonen ALehto THeinonen JRepo T

展开

摘要:

Ectomycorrhizal trees are common in the cold regions of the world, yet the role of the mycorrhizal symbiosis in plant cold tolerance is poorly known. Moreover, the standard methods for testing plant frost hardiness may not be adequate for roots and mycorrhizas. The aims of this study were to compare the frost hardiness of mycorrhizal and non-mycorrhizal Scots pine (Pinus sylvestris L.) seedlings and to test the use of reverse-flow root hydraulic conductance (Kr) measurement for root frost hardiness determination. Mycorrhizal (Hebeloma sp. or Suillus luteus) and non-mycorrhizal seedlings were grown in controlled-environment chambers for 13 weeks. After this, half of the plants were allotted to a non-hardening treatment (long day and high temperature, same as during the preceding growing season) and the other half to a hardening (short day and low temperature) 'autumn' treatment for 4 weeks. The intact seedlings were exposed to whole-plant freezing tests and the needle frost hardiness was measured by relative electrolyte leakage (REL) method. The seedlings were grown for three more weeks for visual damage assessment and Kr measurements using a high-pressure flow meter (HPFM). Mycorrhizas did not affect the frost hardiness of seedlings in either hardening treatment. The effect of the hardening treatment on frost hardiness was shown by REL and visual assessment of the aboveground parts as well as Kr of roots. Non-mycorrhizal plants were larger than mycorrhizal ones while nitrogen and phosphorus contents (per unit dry mass) were similar in all mycorrhiza treatments. In plants with no frost exposure, the non-mycorrhizal treatment had higher Kr. There was no mycorrhizal effect on plant frost hardiness when nutritional effects were excluded. Further studies are needed on the role of mycorrhizas especially in the recovery of growth and nutrient uptake in cold soils in the spring. The HPFM is useful novel method for assessment of root damage.

收起

展开

DOI:

10.1093/treephys/tpy105

被引量:

7

年份:

2019

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(450)

参考文献(0)

引证文献(7)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读