Periodic Mechanical Stress Stimulates GIT1-Dependent Mitogenic Signals in Rat Chondrocytes Through ERK1/2 Activity.
摘要:
The mitogenic effects of periodic mechanical stress on chondrocytes have been studied extensively, but the mechanisms whereby chondrocytes sense and respond to mechanical stimuli remain to be determined. We explored the question and verified the key role of G protein coupled receptor kinase interacting protein 1 (GIT1) signaling in periodic mechanical stress-induced chondrocyte proliferation. Two steps were undertaken in the experiment. In the first step, the cells were maintained under non-pressure conditions or periodic mechanical stress for 1 h prior to Western blot analysis. In the second step, the cells were pretreated with short hairpin RNA (shRNA) targeted to GIT1 or Src or control scrambled shRNA, or transfected with GIT1 wild-type or GIT1 mutant Y321F, or focal adhesion kinase (FAK) wild-type or FAK mutants Y397F or Y576F/Y577, respectively. Moreover, the cells were pretreated with blocking antibody against integrin β1 or PP2. Then the cells were maintained under non-pressure conditions or periodic mechanical stress for 1 h prior to Western blot analysis, and for 3 days, 8 h per day, prior to direct cell counting and CCK-8 assay, respectively. Periodic mechanical stress significantly induced sustained phosphorylation of GIT1 at Tyr321. Reduction of GIT1 with shRNA targeted to GIT1 and GIT1 mutant Y321F inhibited periodic mechanical stress-promoted chondrocyte proliferation, accompanied by attenuated extracellular signal-regulated kinase (ERK)1/2 and FAK phosphorylation at Tyr576/577. However, activation of Src and FAK-Tyr397 was not prevented upon GIT1 suppression. Furthermore, pretreatment with blocking antibody against integrin β1, Src-selective inhibitor, PP2, and shRNA targeted to Src blocked GIT1 activation under periodic mechanical stress. In addition, GIT1 phosphorylation at Tyr321 was not reduced upon pretreatment with FAK mutants Y397F or Y576F/Y577 under conditions of periodic mechanical stress. These findings collectively suggested that periodic mechanical stress promoted chondrocyte proliferation through at least two separate pathways, integrin β1-Src-GIT1-FAK(Tyr576/577)-ERK1/2, and the other parallel GIT1-independent integrin β1-FAK(Tyr397)-ERK1/2.
收起
展开
DOI:
10.1159/000494513
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(198)
参考文献(0)
引证文献(3)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无