Programmed cell death ligand-1 (PD-L1) expression combined with CD8 tumor infiltrating lymphocytes density in non-small cell lung cancer patients.

来自 PUBMED

作者:

El-Guindy DMHelal DSSabry NMAbo El-Nasr M

展开

摘要:

Cancer immunotherapy targeting programmed cell death-1/programmed cell death ligand-1 (PD-1/PD-L1) pathway has shown promising results in treatment of non-small cell lung cancer (NSCLC) patients. T cells play a major role in tumor-associated immune response. This study aimed to investigate PD-L1 expression alone and combined with CD8 tumor infiltrating lymphocytes (TILs) density in relation to clinicopathologic parameters and survival in NSCLC patients. Immunohistochemical analysis was used to evaluate PD-L1 expression and CD8 TILs density in 55 NSCLC patients. PD-L1 immunopositivity was detected in 36 (65.5%) of NSCLC cases. PD-L1 expression was significantly related to high tumor grade (p value = 0.038) and low CD8 TILs density (p value = 0.004), whereas no significant relations were detected between PD-L1 expression and tumor stage (p value = 0.121), overall survival (OS) (p value = 0.428) and progression-free survival (PFS) (p value = 0.439). Among PD-L1/CD8 TILs density groups, PD-L1+/CD8Low group was significantly associated with high tumor grade compared to PD-L1-/CD8high group (pairwise p = 0.016). PD-L1+/CD8Low group was significantly related to advanced tumor stage compared to PD-L1+/CD8high and PD-L1-/CD8Low groups (pairwise p = 0.001 and 0.013 respectively). PD-L1-/CD8high group exhibited the best OS and PFS whereas PD-L1+/CD8low group had the poorest OS and PFS (p value = 0.032 and 0.001 respectively). Assessment of PD-L1 combined with CD8 TILs density, instead of PD-L1 alone, suggested important prognostic relevance in NSCLC patients.

收起

展开

DOI:

10.1016/j.jnci.2018.08.003

被引量:

8

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(2163)

参考文献(0)

引证文献(8)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读