Transfer learning for classification of cardiovascular tissues in histological images.

来自 PUBMED

作者:

Mazo CBernal JTrujillo MAlegre E

展开

摘要:

Automatic classification of healthy tissues and organs based on histology images is an open problem, mainly due to the lack of automated tools. Solutions in this regard have potential in educational medicine and medical practices. Some preliminary advances have been made using image processing techniques and classical supervised learning. Due to the breakthrough performance of deep learning in various areas, we present an approach to recognise and classify, automatically, fundamental tissues and organs using Convolutional Neural Networks (CNN). We adapt four popular CNNs architectures - ResNet, VGG19, VGG16 and Inception - to this problem through transfer learning. The resulting models are evaluated at three stages. Firstly, all the transferred networks are compared to each other. Secondly, the best resulting fine-tuned model is compared to an ad-hoc 2D multi-path model to outline the importance of transfer learning. Thirdly, the same model is evaluated against the state-of-the-art method, a cascade SVM using LBP-based descriptors, to contrast a traditional machine learning approach and a representation learning one. The evaluation task consists of separating six classes accurately: smooth muscle of the elastic artery, smooth muscle of the large vein, smooth muscle of the muscular artery, cardiac muscle, loose connective tissue, and light regions. The different networks are tuned on 6000 blocks of 100 × 100 pixels and tested on 7500. Our proposal yields F-score values between 0.717 and 0.928. The highest and lowest performances are for cardiac muscle and smooth muscle of the large vein, respectively. The main issue leading to limited classification scores for the latter class is its similarity with the elastic artery. However, this confusion is evidenced during manual annotation as well. Our algorithm reached improvements in F-score between 0.080 and 0.220 compared to the state-of-the-art machine learning approach. We conclude that it is possible to classify healthy cardiovascular tissues and organs automatically using CNNs and that deep learning holds great promise to improve tissue and organs classification. We left our training and test sets, models and source code publicly available to the research community.

收起

展开

DOI:

10.1016/j.cmpb.2018.08.006

被引量:

18

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(917)

参考文献(0)

引证文献(18)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读