Xanthine oxidase is hyper-active in Duchenne muscular dystrophy.
Generation of superoxide by xanthine oxidase can be stimulated under ischemic and aberrant calcium homeostasis. Because patients and mice with Duchenne muscular dystrophy (DMD) suffer from ischemia and excessive calcium influx, we tested the hypothesis that xanthine oxidase activity is elevated and contributes to disease pathology. Xanthine oxidase activity was measured by urinary isoxanthopterin in DMD patients at rest and in response to exercise. Urinary isoxanthopterin/creatinine was elevated compared to age-matched controls and Becker muscular dystrophy (BMD) patients. Concentrations were also increased after a six minute walk test in ambulatory patients. We also measured urinary isoxanthopterin in wildtype mice and a number of dystrophic mouse models; the DMD mouse model (mdx), mdx mice overexpressing a variety of transgenic miniaturized and chimeric skeletal muscle-specific dystrophins and utrophin and the β-sarcoglycan deficient (Scgb-/-) mouse which represents type 2E human limb-girdle muscular dystrophy. Mdx and Scgb-/-mice had greater urinary isoxanthopterin/creatinine than wildtype mice while mdx mice expressing dystrophin or utrophin linking the extracellular matrix to the actin cytoskeleton were not different than wildtype. We also measured higher levels of urinary ortho-tyrosine in humans and mice deficient for dystrophin to confirm elevated oxidative stress. Surprisingly, mdx had lower xanthine oxidase protein levels and higher mRNA in gastrocnemius muscle compared to wildtype mice, however, the enzymatic activity of skeletal muscle xanthine oxidase was elevated above wildtype and a transgenic rescued mdx mouse (DysΔMTB-mdx). Downhill treadmill running also caused significant increases in mdx urinary isoxanthopterin that was prevented with the xanthine oxidase inhibitor allopurinol. Similarly, in vitro eccentric contraction-induced force drop of mdx muscle was attenuated by the allopurinol metabolite, oxypurinol. Together, our data suggests hyper-activity of xanthine oxidase in DMD, identifies xanthine oxidase activity as a contributing factor in eccentric contraction-induced force drop of dystrophin-deficient skeletal muscle and highlights the potential of isoxanthopterin as a noninvasive biomarker in DMD.
Lindsay A
,McCourt PM
,Karachunski P
,Lowe DA
,Ervasti JM
... -
《-》
Pharmacological Inhibition of PKCθ Counteracts Muscle Disease in a Mouse Model of Duchenne Muscular Dystrophy.
Inflammation plays a considerable role in the progression of Duchenne Muscular Dystrophy (DMD), a severe muscle disease caused by a mutation in the dystrophin gene. We previously showed that genetic ablation of Protein Kinase C θ (PKCθ) in mdx, the mouse model of DMD, improves muscle healing and regeneration, preventing massive inflammation. To establish whether pharmacological targeting of PKCθ in DMD can be proposed as a therapeutic option, in this study we treated young mdx mice with the PKCθ inhibitor Compound 20 (C20). We show that C20 treatment led to a significant reduction in muscle damage associated with reduced immune cells infiltration, reduced inflammatory pathways activation, and maintained muscle regeneration. Importantly, C20 treatment is efficient in recovering muscle performance in mdx mice, by preserving muscle integrity. Together, these results provide proof of principle that pharmacological inhibition of PKCθ in DMD can be considered an attractive strategy to modulate immune response and prevent the progression of the disease.
Duchenne muscular dystrophy (DMD) is a severe muscle disease affecting 1:3500 male births. DMD is caused by a mutation in dystrophin gene, coding for a protein required for skeletal and cardiac muscle integrity. Lack of a functional dystrophin is primarily responsible for the muscle eccentric contraction-induced muscle damage, observed in dystrophic muscle. However, inflammation plays a considerable role in the progression of DMD. Glucocorticoids, which have anti-inflammatory properties, are being used to treat DMD with some success; however, long term treatment with these drugs induces muscle atrophy and wasting, outweighing their benefit. The identification of specific targets for anti-inflammatory therapies is one of the ongoing therapeutic options. Although blunting inflammation would not be a "cure" for the disease, the emerging clue is that multiple strategies, addressing different aspects of the pathology, which may eventually converge, may be successful. In this context, we previously showed that genetic ablation of Protein Kinase C θ (PKCθ), an enzyme known to be involved in immune response, in mdx, the mouse model of DMD, improves muscle healing and regeneration, preventing massive inflammation. To establish whether pharmacological targeting of PKCθ in DMD can be proposed as a therapeutic option, in this study we treated young mdx mice with the PKCθ inhibitor Compound 20 (C20). We show that C20 treatment led to a significant reduction in muscle damage associated with reduced immune cells infiltration, reduced inflammatory pathways activation, and maintained muscle regeneration. Importantly, C20 treatment is efficient in recovering muscle performance in mdx mice, by preserving muscle integrity. Together, these results provide proof of principle that pharmacological inhibition of PKCθ in DMD can be considered an attractive strategy to modulate immune response and prevent the progression of the disease.
Marrocco V
,Fiore P
,Benedetti A
,Pisu S
,Rizzuto E
,Musarò A
,Madaro L
,Lozanoska-Ochser B
,Bouché M
... -
《EBioMedicine》
Neopterin/7,8-dihydroneopterin is elevated in Duchenne muscular dystrophy patients and protects mdx skeletal muscle function.
What is the central question of this study? We examined whether the macrophage-synthesized antioxidant 7,8-dihydroneopterin was elevated in Duchenne muscular dystrophy (DMD) patients. We then examined whether 7,8-dihydroneopterin could protect dystrophic skeletal mouse muscle from eccentric contraction-induced force loss and improve recovery. What is the main finding and its importance? Urinary neopterin/creatinine and 7,8-dihydroneopterin/creatinine were elevated in DMD patients. 7,8-Dihydroneopterin attenuated eccentric contraction-induced force loss of dystrophic skeletal mouse muscle and accelerated recovery of force. These results suggest that eccentric contraction-induced force loss is mediated, in part, by an oxidative component and provides a potential protective role for 7,8-dihydroneopterin in DMD.
Macrophage infiltration is a hallmark of dystrophin-deficient muscle. We tested the hypothesis that Duchenne muscular dystrophy (DMD) patients would have elevated levels of the macrophage-synthesized pterins, neopterin and 7,8-dihydroneopterin, compared with unaffected age-matched control subjects. Urinary neopterin/creatinine and 7,8-dihydroneopterin/creatinine were elevated in DMD patients, and 7,8-dihydroneopterin/creatinine was associated with patient age and ambulation. Urinary 7,8-dihydroneopterin corrected for specific gravity was also elevated in DMD patients. Given that 7,8-dihydroneopterin is an antioxidant, we then identified a potential role for 7,8-dihydroneopterin in disease pathology. We assessed whether 7,8-dihydroneopterin could: (i) protect against isometric force loss in wild-type skeletal muscle exposed to various pro-oxidants; and (ii) protect wild-type and mdx muscle from eccentric contraction-induced force loss, which has an oxidative component. Force loss was elicited in isolated extensor digitorum longus (EDL) muscles by 10 eccentric contractions, and recovery of force after the contractions was measured in the presence of exogenous 7,8-dihydroneopterin. 7,8-Dihydroneopterin attenuated isometric force loss by wild-type EDL muscles when challenged by H2 O2 and HOCl, but exacerbated force loss when challenged by SIN-1 (NO• , O2• , ONOO- ). 7,8-Dihydroneopterin attenuated eccentric contraction-induced force loss in mdx muscle. Isometric force production by EDL muscles of mdx mice also recovered to a greater degree after eccentric contractions in the presence of 7,8-dihydroneopterin. The results corroborate macrophage activation in DMD patients, provide a potential protective role for 7,8-dihydroneopterin in the susceptibility of dystrophic muscle to eccentric contractions and indicate that oxidative stress contributes to eccentric contraction-induced force loss in mdx skeletal muscle.
Lindsay A
,Schmiechen A
,Chamberlain CM
,Ervasti JM
,Lowe DA
... -
《-》