Hypothermic Machine Perfusion Versus Static Cold Storage in Deceased Donor Kidney Transplantation: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.
Static cold storage (SCS) and hypothermic machine perfusion (HMP) are two primary options for renal allograft preservation. Compared with SCS, HMP decreased the incidence of delayed graft function (DGF) and protected graft function. However, more evidence is still needed to prove the advantages of the HMP. In this study, the outcomes of kidney grafts from the two preservation methods were compared by conducting a systematic review and meta-analysis. Randomized controlled trials (RCTs) comparing the effect of hypothermic machine perfusion and static cold storage in deceased donor kidney transplantation were identified through searches of the MEDLINE, EMBASE, and Cochrane databases between January 1, 1980 and December 30, 2017. The primary endpoints were delayed graft function and graft survival. Secondary endpoints included primary non-function (PNF), graft renal function, duration of DGF, acute rejection, postoperative hospital stay and patient survival. Summary effects were calculated as risk ratio (RR) with 95% confidence interval (CI) or mean difference (MD) with 95% confidence intervals (CI). A total of 13 RCTs were included, including 2048 kidney transplant recipients. The results indicated that compared with SCS, HMP decreased the incidence of DGF (RR 0.78, 95% CI 0.69-0.87, P < 0.0001), and improved the graft survival at 3 years (RR 1.06, 95% CI 1.02-1.11, P = 0.009). There was no significant difference in other endpoints. HMP might be a more desirable method of preservation for kidney grafts. The long-term outcomes of kidney allografts stored by hypothermic machine perfusion still need to be further investigated.
Peng P
,Ding Z
,He Y
,Zhang J
,Wang X
,Yang Z
... -
《-》
Normothermic and hypothermic machine perfusion preservation versus static cold storage for deceased donor kidney transplantation.
Kidney transplantation is the optimal treatment for kidney failure. Donation, transport and transplant of kidney grafts leads to significant ischaemia reperfusion injury. Static cold storage (SCS), whereby the kidney is stored on ice after removal from the donor until the time of implantation, represents the simplest preservation method. However, technology is now available to perfuse or "pump" the kidney during the transport phase ("continuous") or at the recipient centre ("end-ischaemic"). This can be done at a variety of temperatures and using different perfusates. The effectiveness of these treatments manifests as improved kidney function post-transplant.
To compare machine perfusion (MP) technologies (hypothermic machine perfusion (HMP) and (sub) normothermic machine perfusion (NMP)) with each other and with standard SCS.
We contacted the information specialist and searched the Cochrane Kidney and Transplant Register of Studies until 15 June 2024 using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal, and ClinicalTrials.gov.
All randomised controlled trials (RCTs) and quasi-RCTs comparing machine perfusion techniques with each other or versus SCS for deceased donor kidney transplantation were eligible for inclusion. All donor types were included (donor after circulatory death (DCD) and brainstem death (DBD), standard and extended/expanded criteria donors). Both paired and unpaired studies were eligible for inclusion.
The results of the literature search were screened, and a standard data extraction form was used to collect data. Both of these steps were performed by two independent authors. Dichotomous outcome results were expressed as risk ratios (RR) with 95% confidence intervals (CI). Survival analyses (time-to-event) were performed with the generic inverse variance meta-analysis of hazard ratios (HR). Continuous scales of measurement were expressed as a mean difference (MD). Random effects models were used for data analysis. The primary outcome was the incidence of delayed graft function (DGF). Secondary outcomes included graft survival, incidence of primary non-function (PNF), DGF duration, economic implications, graft function, patient survival and incidence of acute rejection. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach.
Twenty-two studies (4007 participants) were included. The risk of bias was generally low across all studies and bias domains. The majority of the evidence compared non-oxygenated HMP with standard SCS (19 studies). The use of non-oxygenated HMP reduces the rate of DGF compared to SCS (16 studies, 3078 participants: RR 0.78, 95% CI 0.69 to 0.88; P < 0.0001; I2 = 31%; high certainty evidence). Subgroup analysis revealed that continuous (from donor hospital to implanting centre) HMP reduces DGF (high certainty evidence). In contrast, this benefit over SCS was not seen when non-oxygenated HMP was not performed continuously (low certainty evidence). Non-oxygenated HMP reduces DGF in both DCD and DBD settings in studies performed in the 'modern era' and when cold ischaemia times (CIT) were short. The number of perfusions required to prevent one episode of DGF was 7.69 and 12.5 in DCD and DBD grafts, respectively. Continuous non-oxygenated HMP versus SCS also improves one-year graft survival (3 studies, 1056 participants: HR 0.46, 0.29 to 0.75; P = 0.002; I2 = 0%; high certainty evidence). Assessing graft survival at maximal follow-up confirmed a benefit of continuous non-oxygenated HMP over SCS (4 studies, 1124 participants (follow-up 1 to 10 years): HR 0.55, 95% CI 0.40 to 0.77; P = 0.0005; I2 = 0%; high certainty evidence). This effect was not seen in studies where HMP was not continuous. The effect of non-oxygenated HMP on our other outcomes (PNF, incidence of acute rejection, patient survival, hospital stay, long-term graft function, duration of DGF) remains uncertain. Studies performing economic analyses suggest that HMP is either cost-saving (USA and European settings) or cost-effective (Brazil). One study investigated continuous oxygenated HMP versus non-oxygenated HMP (low risk of bias in all domains); the simple addition of oxygen during continuous HMP leads to additional benefits over non-oxygenated HMP in DCD donors (> 50 years), including further improvements in graft survival, improved one-year kidney function, and reduced acute rejection. One large, high-quality study investigated end-ischaemic oxygenated HMP versus SCS and found end-ischaemic oxygenated HMP (median machine perfusion time 4.6 hours) demonstrated no benefit compared to SCS. The impact of longer periods of end-ischaemic HMP is unknown. One study investigated NMP versus SCS (low risk of bias in all domains). One hour of end ischaemic NMP did not improve DGF compared with SCS alone. An indirect comparison revealed that continuous non-oxygenated HMP (the most studied intervention) was associated with improved graft survival compared with end-ischaemic NMP (indirect HR 0.31, 95% CI 0.11 to 0.92; P = 0.03). No studies investigated normothermic regional perfusion (NRP) or included any donors undergoing NRP.
Continuous non-oxygenated HMP is superior to SCS in deceased donor kidney transplantation, reducing DGF, improving graft survival and proving cost-effective. This is true for both DBD and DCD kidneys, both short and long CITs, and remains true in the modern era (studies performed after 2008). In DCD donors (> 50 years), the simple addition of oxygen to continuous HMP further improves graft survival, kidney function and acute rejection rate compared to non-oxygenated HMP. Timing of HMP is important, and benefits have not been demonstrated with short periods (median 4.6 hours) of end-ischaemic HMP. End-ischaemic NMP (one hour) does not confer meaningful benefits over SCS alone and is inferior to continuous HMP in an indirect comparison of graft survival. Further studies assessing NMP for viability assessment and therapeutic delivery are warranted and in progress.
Tingle SJ
,Thompson ER
,Figueiredo RS
,Moir JA
,Goodfellow M
,Talbot D
,Wilson CH
... -
《Cochrane Database of Systematic Reviews》
Systematic review and meta-analysis of hypothermic machine perfusion versus static cold storage of kidney allografts on transplant outcomes.
Adequate preservation of renal allografts for transplantation is important for maintaining and improving transplant outcomes. There are two prevalent methods: hypothermic machine perfusion and static cold storage. The preferred method of storage, however, remains controversial. The objective was to review systematically the evidence comparing outcomes from these two modalities.
A literature search was performed using MEDLINE, Embase, the Cochrane Library, the Transplant Library and the International Clinical Trials Registry Platform. The final date for searches was 30 November 2012. Studies were assessed for methodological quality. Summary effects were calculated as relative risk (RR) with 95 per cent confidence interval (c.i.). Randomized clinical trials (RCTs) and non-RCTs were included, but evaluated separately. Results from RCTs alone were used for meta-analysis.
Eighteen studies met the inclusion criteria, including seven RCTs (1475 kidneys) and 11 non-RCTs (728 kidneys). The overall risk of delayed graft function was lower with hypothermic machine perfusion than static cold storage (RR 0·81, 95 per cent c.i. 0·71 to 0·92; P = 0·002). There was no difference in the rate of primary non-function (RR 1·15, 0·46 to 2·90; P = 0·767). There was a faster initial fall in the level of serum creatinine with hypothermic machine perfusion in two RCTs, but not in another. There was no relationship between rates of acute rejection or patient survival and the method of preservation.
Data from the included studies suggest that hypothermic machine perfusion reduces delayed graft function compared with static cold storage. There was no difference in primary non-function, acute rejection, long-term renal function or patient survival. A difference in renal graft survival is uncertain.
O'Callaghan JM
,Morgan RD
,Knight SR
,Morris PJ
... -
《-》
Hypothermic machine perfusion in deceased donor kidney transplantation: a systematic review.
Hypothermic machine perfusion (HMP) of kidneys is intended to mitigate the deleterious effects of cold storage on organ quality, particularly when the cold ischemic time is prolonged or the donor is otherwise marginal. The use of HMP has remained controversial; however, a number of randomized controlled trials (RCTs) have recently been conducted to clarify its benefits.
We undertook a systematic search of the Medline and Embase databases and of the Cochrane Central Register of Controlled Trials. We included only RCTs in the meta-analysis. Outcomes analyzed were the incidence of delayed graft function (DGF), primary nonfunction (PNF), graft loss, and patient death at 1 y.
We identified seven RCT trials and subjected them to meta-analysis, including 1353 kidney transplant recipients. Hypothermic machine perfusion significantly reduced the incidence of DGF (risk ratio [RR] 0.83, 95% confidence interval [CI] 0.72-0.96). There was no difference in the incidence of PNF (RR 0.78, 95% CI 0.36-1.68), graft loss at 1 y (RR 0.87, 95% CI 0.64-1.19), and patient death at 1 y (RR 0.91, 95% CI 0.60-1.37) between HMP and donor kidneys preserved using cold storage.
There are few RCT comparing HMP and cold storage of kidneys in deceased donor kidney transplantation. Although these studies are small and heterogeneous in design, HMP appeared to be associated with a reduced incidence of DGF. No difference in the incidence of PNF, graft loss, or patient death at 1 y could be demonstrated.
Lam VW
,Laurence JM
,Richardson AJ
,Pleass HC
,Allen RD
... -
《-》