-
Dickkopf-3 (DKK3) in Urine Identifies Patients with Short-Term Risk of eGFR Loss.
The individual course of CKD may vary, and improved methods for identifying which patients will experience short-term eGFR loss are needed. Assessing urinary Dickkopf-3 (DKK3), a stress-induced tubular epithelia-derived profibrotic glycoprotein, may provide information about ongoing tubulointerstitial fibrosis and short-term eGFR loss.
To investigate urinary DKK3's potential as a biomarker of short-term eGFR loss (over 12 months), we prospectively assessed eGFR and urinary DKK3 levels in patients with CKD of various etiologies at baseline and annual follow-ups. We also measured urinary DKK3 in a general population sample and patients with diagnostic kidney biopsies or IgA nephropathy under treatment.
Median urinary DKK3-to-creatinine concentration at baseline was significantly higher in patients with CKD than the general population sample (431 versus 33 pg/mg). In the CKD cohort, having a urinary DKK3-to-creatinine level >4000 pg/mg was independently and significantly associated after multiple adjustments with mean annual decline in eGFR of 7.6% over 12 months. Urinary DKK3 significantly improved prediction of kidney function decline compared with eGFR or albuminuria alone. Urinary DKK3-to-creatinine levels were related to the extent of tubulointerstitial fibrosis in kidney biopsies. In patients with IgA nephropathy, a rise in urinary DKK3 was associated with significant eGFR decline within 6 months, whereas stable or decreasing urinary DKK3 indicated a more favorable course.
Urinary DKK3 levels identify patients at high risk for eGFR decline over the next 12 months regardless of the cause of kidney injury and beyond established biomarkers, potentially providing a tool to monitor CKD progression and assess effects of interventions.
Zewinger S
,Rauen T
,Rudnicki M
,Federico G
,Wagner M
,Triem S
,Schunk SJ
,Petrakis I
,Schmit D
,Wagenpfeil S
,Heine GH
,Mayer G
,Floege J
,Fliser D
,Gröne HJ
,Speer T
... -
《-》
-
Association between urinary dickkopf-3, acute kidney injury, and subsequent loss of kidney function in patients undergoing cardiac surgery: an observational cohort study.
Cardiac surgery is associated with a high risk of postoperative acute kidney injury (AKI) and subsequent loss of kidney function. We explored the clinical utility of urinary dickkopf-3 (DKK3), a renal tubular stress marker, for preoperative identification of patients at risk for AKI and subsequent kidney function loss.
This observational cohort study included patients who had cardiac surgery in a derivation cohort and those who had cardiac surgery in a validation cohort (RenalRIP trial). The study comprised consecutive patients who had elective cardiac surgery at the Saarland University Medical Centre (Homburg, Germany; derivation cohort) and those undergoing elective cardiac surgery (selected on the basis of a Cleveland Clinical Foundation score of 6 or higher) who were enrolled in the prospective RenalRIP multicentre trial (validation cohort) and who were randomly assigned to remote ischaemic preconditioning or a sham procedure. The association between the ratio of preoperative urinary concentrations of DKK3 to creatinine (DKK3:creatinine) and postoperative AKI, defined according to the Kidney Disease Improving Global Outcomes criteria, and subsequent kidney function loss, as determined by estimated glomerular filtration rate, was assessed.
In the 733 patient in the derivation cohort, urinary concentrations of DKK3 to creatinine that were higher than 471 pg/mg were associated with significantly increased risk for AKI (odds ratio [OR] 1·65, 95% CI 1·10-2·47, p=0·015), independent of baseline kidney function. Compared with clinical and other laboratory measurements, urinary concentrations of DKK3:creatinine significantly improved AKI prediction (net reclassification improvement 0·32, 95% CI 0·23-0·42, p<0·0001). High urinary DKK3:creatinine concentrations were independently associated with significantly lower kidney function at hospital discharge and after a median follow-up of 820 days (IQR 733-910). In the RenalRIP trial, preoperative urinary DKK3:creatinine concentrations higher than 471 pg/mg were associated with a significantly higher risk for AKI (OR 1·94, 95% CI 1·08-3·47, p=0·026), persistent renal dysfunction (OR 6·67, 1·67-26·61, p=0·0072), and dialysis dependency (OR 13·57, 1·50-122·77, p=0·020) after 90 days compared with DKK3:creatinine concentrations of 471 pg/mg or less. Urinary DKK3:creatinine concentrations higher than 471 pg/mg were associated with significantly higher risk for AKI (OR 2·79, 95% CI 1·45-5·37) and persistent renal dysfunction (OR 3·82, 1·32-11·05) only in patients having a sham procedure, but not remote ischaemic preconditioning (AKI OR 1·35, 0·76-2·39 and persistent renal dysfunction OR 1·05, 0·12-9·45).
Preoperative urinary DKK3 is an independent predictor for postoperative AKI and for subsequent loss of kidney function. Urinary DKK3 might aid in the identification of patients in whom preventive treatment strategies are effective.
No study funding.
Schunk SJ
,Zarbock A
,Meersch M
,Küllmar M
,Kellum JA
,Schmit D
,Wagner M
,Triem S
,Wagenpfeil S
,Gröne HJ
,Schäfers HJ
,Fliser D
,Speer T
,Zewinger S
... -
《-》
-
Urinary DKK3 as a biomarker for short-term kidney function decline in children with chronic kidney disease: an observational cohort study.
Childhood-onset chronic kidney disease is a progressive condition that can have a major effect on life expectancy and quality. We evaluated the usefulness of the kidney tubular cell stress marker urinary Dickkopf-related protein 3 (DKK3) in determining the short-term risk of chronic kidney disease progression in children and identifying those who will benefit from specific nephroprotective interventions.
In this observational cohort study, we assessed the association between urinary DKK3 and the combined kidney endpoint (ie, the composite of 50% reduction of the estimated glomerular filtration rate [eGFR] or progression to end-stage kidney disease) or the risk of kidney replacement therapy (ie, dialysis or transplantation), and the interaction of the combined kidney endpoint with intensified blood pressure reduction in the randomised controlled ESCAPE trial. Moreover, urinary DKK3 and eGFR were quantified in children aged 3-18 years with chronic kidney disease and urine samples available enrolled in the prospective multicentre ESCAPE (NCT00221845; derivation cohort) and 4C (NCT01046448; validation cohort) studies at baseline and at 6-monthly follow-up visits. Analyses were adjusted for age, sex, hypertension, systolic blood pressure SD score (SDS), BMI SDS, albuminuria, and eGFR.
659 children were included in the analysis (231 from ESCAPE and 428 from 4C), with 1173 half-year blocks in ESCAPE and 2762 in 4C. In both cohorts, urinary DKK3 above the median (ie, >1689 pg/mg creatinine) was associated with significantly greater 6-month eGFR decline than with urinary DKK3 at or below the median (-5·6% [95% CI -8·6 to -2·7] vs 1·0% [-1·9 to 3·9], p<0·0001, in ESCAPE; -6·2% [-7·3 to -5·0] vs -1·5% [-2·9 to -0·1], p<0·0001, in 4C), independently of diagnosis, eGFR, and albuminuria. In ESCAPE, the beneficial effect of intensified blood pressure control was limited to children with urinary DKK3 higher than 1689 pg/mg creatinine, in terms of the combined kidney endpoint (HR 0·27 [95% CI 0·14 to 0·55], p=0·0003, number needed to treat 4·0 [95% CI 3·7 to 4·4] vs 250·0 [66·9 to ∞]) and the need for kidney replacement therapy (HR 0·33 [0·13 to 0·85], p=0·021, number needed to treat 6·7 [6·1 to 7·2] vs 31·0 [27·4 to 35·9]). In 4C, inhibition of the renin-angiotensin-aldosterone system resulted in significantly lower urinary DKK3 concentrations (least-squares mean 12 235 pg/mg creatinine [95% CI 10 036 to 14 433] in patients not on angiotensin-converting enzyme inhibitors or angiotensin 2 receptor blockers vs 6861 pg/mg creatinine [5616 to 8106] in those taking angiotensin-converting enzyme inhibitors or angiotensin 2 receptor blockers, p<0·0001).
Urinary DKK3 indicates short-term risk of declining kidney function in children with chronic kidney disease and might allow a personalised medicine approach by identifying those who benefit from pharmacological nephroprotection, such as intensified blood pressure lowering.
None.
Speer T
,Schunk SJ
,Sarakpi T
,Schmit D
,Wagner M
,Arnold L
,Zewinger S
,Azukaitis K
,Bayazit A
,Obrycki L
,Kaplan Bulut I
,Duzova A
,Doyon A
,Ranchin B
,Caliskan S
,Harambat J
,Yilmaz A
,Alpay H
,Lugani F
,Balat A
,Arbeiter K
,Longo G
,Melk A
,Querfeld U
,Wühl E
,Mehls O
,Fliser D
,Schaefer F
,4C Study Investigators, ESCAPE Trial Investigators
... -
《-》
-
Urinary Dickkopf 3 Is Not an Independent Risk Factor in a Cohort of Kidney Transplant Recipients and Living Donors.
Jehn U
,Altuner U
,Henkel L
,Menke AF
,Strauss M
,Pavenstädt H
,Reuter S
... -
《INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES》
-
Urine Markers of Kidney Tubule Cell Injury and Kidney Function Decline in SPRINT Trial Participants with CKD.
eGFR and albuminuria primarily reflect glomerular function and injury, whereas tubule cell atrophy and interstitial fibrosis on kidney biopsy are important risk markers for CKD progression. Kidney tubule injury markers have primarily been studied in hospitalized AKI. Here, we examined the association between urinary kidney tubule injury markers at baseline with subsequent loss of kidney function in persons with nondiabetic CKD who participated in the Systolic Blood Pressure Intervention Trial (SPRINT).
Among 2428 SPRINT participants with CKD (eGFR<60 ml/min per 1.73 m2) at baseline, we measured urine markers of tubule injury (IL-18, kidney injury molecule-1 [KIM-1], neutrophil gelatinase-associated lipocalin [NGAL]), inflammation (monocyte chemoattractant protein-1 [MCP-1]), and repair (human cartilage glycoprotein-40 [YKL-40]). Cox proportional hazards models evaluated associations of these markers with the kidney composite outcome of 50% eGFR decline or ESKD requiring dialysis or kidney transplantation, and linear mixed models evaluated annualized change in eGFR.
Mean participant age was 73±9 (SD) years, 60% were men, 66% were white, and mean baseline eGFR was 46±11 ml/min per 1.73 m2. There were 87 kidney composite outcome events during a median follow-up of 3.8 years. Relative to the respective lowest quartiles, the highest quartiles of urinary KIM-1 (hazard ratio, 2.84; 95% confidence interval [95% CI], 1.31 to 6.17), MCP-1 (hazard ratio, 2.43; 95% CI, 1.13 to 5.23), and YKL-40 (hazard ratio, 1.95; 95% CI, 1.08 to 3.51) were associated with higher risk of the kidney composite outcome in fully adjusted models including baseline eGFR and urine albumin. In linear analysis, urinary IL-18 was the only marker associated with eGFR decline (-0.91 ml/min per 1.73 m2 per year for highest versus lowest quartile; 95% CI, -1.44 to -0.38), a finding that was stronger in the standard arm of SPRINT.
Urine markers of tubule cell injury provide information about risk of subsequent loss of kidney function, beyond the eGFR and urine albumin.
Malhotra R
,Katz R
,Jotwani V
,Ambrosius WT
,Raphael KL
,Haley W
,Rastogi A
,Cheung AK
,Freedman BI
,Punzi H
,Rocco MV
,Ix JH
,Shlipak MG
... -
《-》