KDM6B overexpression activates innate immune signaling and impairs hematopoiesis in mice.
摘要:
KDM6B is an epigenetic regulator that mediates transcriptional activation during differentiation, including in bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs). Overexpression of KDM6B has been reported in BM HSPCs of patients with myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML). Whether the overexpression of KDM6B contributes to the pathogenesis of these diseases remains to be elucidated. To study this, we generated a Vav-KDM6B mouse model, which overexpresses KDM6B in the hematopoietic compartment. KDM6B overexpression alone led to mild hematopoietic phenotype, and chronic innate immune stimulation of Vav-KDM6B mice with the Toll-like receptor (TLR) ligand lipopolysaccharide (LPS) resulted in significant hematopoietic defects. These defects recapitulated features of MDS and CMML, including leukopenia, dysplasia, and compromised repopulating function of BM HSPCs. Transcriptome studies indicated that KDM6B overexpression alone could lead to activation of disease-relevant genes such as S100a9 in BM HSPCs, and when combined with innate immune stimulation, KDM6B overexpression resulted in more profound overexpression of innate immune and disease-relevant genes, indicating that KDM6B was involved in the activation of innate immune signaling in BM HSPCs. Finally, pharmacologic inhibition of KDM6B with the small molecule inhibitor GSK-J4 ameliorated the ineffective hematopoiesis observed in Vav-KDM6B mice. This effect was also observed when GSK-J4 was applied to the primary BM HSPCs of patients with MDS by improving their repopulating function. These results indicate that overexpression of KDM6B mediates activation of innate immune signals and has a role in MDS and CMML pathogenesis, and that KDM6B targeting has therapeutic potential in these myeloid disorders.
收起
展开
DOI:
10.1182/bloodadvances.2018024166
被引量:
年份:
2018


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(261)
参考文献(33)
引证文献(24)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无