Genome-wide association study of milk fatty acid composition in Italian Simmental and Italian Holstein cows using single nucleotide polymorphism arrays.

来自 PUBMED

作者:

Palombo VMilanesi MSgorlon SCapomaccio SMele MNicolazzi EAjmone-Marsan PPilla FStefanon BD'Andrea M

展开

摘要:

Bovine milk is important for human nutrition, but its fat content is often criticized as a risk factor in cardiovascular disease. Selective breeding programs could be used to alter the fatty acid (FA) composition of bovine milk to improve the healthiness of dairy products for human consumption. Here, we performed a genome-wide association study (GWAS) on bovine milk to identify genomic regions or specific genes associated with FA profile and to investigate genetic differences between the Italian Simmental (IS) and Italian Holstein (IH) breeds. To achieve this, we first characterized milk samples from 416 IS cows and 436 IH cows for their fat profile by gas chromatography. Subjects were genotyped with single nucleotide polymorphism array and a single-marker regression model for GWAS was performed. Our findings confirm previously reported quantitative trait loci strongly associated with bovine milk fat composition. More specifically, our GWAS results revealed significant signals on chromosomes Bos taurus autosome 19 and 26 for milk FA. Further analysis using a gene-centric approach and pathway meta-analysis identified not only some well-known genes underlying quantitative trait loci for milk FA components, such as FASN, SCD, and DGAT1, but also other significant candidate genes, including some with functional roles in pathways related to "Lipid metabolism." Highlighted genes related to FA profile include ECI2, PCYT2, DCXR, G6PC3, PYCR1, and ALG12 in IS, and CYP17A1, ACO2, PI4K2A, GOT1, GPT, NT5C2, PDE6G, POLR3H, and COX15 in IH. Overall, the breed-specific association outcomes reflect differences in the genetic backgrounds of the IS and IH breeds and their selective breeding histories.

收起

展开

DOI:

10.3168/jds.2018-14413

被引量:

34

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(243)

参考文献(0)

引证文献(34)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读