A light-controllable specific drug delivery nanoplatform for targeted bimodal imaging-guided photothermal/chemo synergistic cancer therapy.

来自 PUBMED

作者:

Guo YWang XYChen YLLiu FQTan MXAo MYu JHRan HTWang ZX

展开

摘要:

Breast cancer is a severe threat to the health and lives of women due to its difficult early diagnosis and the unsatisfactory therapeutic efficacy of breast cancer treatments. The development of theranostic strategies to combat breast cancer with high accuracy and effectiveness is therefore urgently needed. In this study, we describe a near-infrared (NIR) light-controllable, targeted and biocompatible drug delivery nanoplatform (PFH-PTX@PLGA/SPIO-Her) for photoacoustic (PA)/ultrasound (US) bimodal imaging-guided photothermal (PTT)/chemo synergistic cancer therapy of breast cancer. Carboxyl-modified PEGylated poly (lactic-co-glycolic acid) (PLGA-PEG-COOH) constituted the skeleton of the nanoplatform. Especially, the antibody Herceptin was modified onto the surface of nanoplatform for active HER2-targing to facilitate the tumor accumulation of the nanoplatform. The encapsulated superparamagnetic iron oxide (SPIO) nanoparticles could be employed as an excellent PA imaging agent to guide tumor therapy. When exposed to NIR light, the SPIO also could transform NIR light into thermal energy for photothermal ablation of tumor. The NIR-induced thermal effect subsequently triggered the optical droplet vaporization (ODV) of perfluorohexane (PFH) to generate PFH gas bubbles, which not only achieved the US imaging enhancement, but also contributed to the release of loaded paclitaxel (PTX) from the nanoplatform for significantly improving PTT therapeutic efficacy. Our results demonstrated that the targeted tumor accumulation, accurate real-time bimodal imaging, and the abundant drug release at the tumor site were all closely associated with the PTT therapeutic efficacy. Therefore, the theranostic nanoplatform is a very promising strategy for targeted imaging-guided photothermal/chemo synergistic tumor therapy with high therapeutic efficacy and minimized side effects. STATEMENT OF SIGNIFICANCE: Breast cancer is the most frequent cancer in women. Herein, we successfully developed a light-controllable and HER2 targeted theranostic nanoparticels (PFH-PTX@PLGA/SPIO-Her) as a specific drug delivery nanoplatform to overcome the low accuracy of tumor detection and the low specificity of traditional chemo-therapeutic protocols. The study demonstrated that PFH-PTX@PLGA/SPIO-Her could actively target to breast cancer cells with positive HER2 expression. The biocompatible PFH-PTX@PLGA/SPIO-Her nanoparticles as both photoacoustic/ultrasound bimodal imaging agents, photothermal-conversion nanomaterials (photothermal hyperthermia) and controllable drug delivery nanoagents (optical droplet vaporization) have completely eradicated the tumor without severe side effects. The theranostic strategy not only integrates strengthens of traditional imaging or therapeutic modalities, but also paves a new way for the efficient cancer treatment by taking the advantage of quickly-developing nanomedicine.

收起

展开

DOI:

10.1016/j.actbio.2018.09.024

被引量:

21

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(4777)

参考文献(0)

引证文献(21)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读