Characterizing toxicity of metal-contaminated sediments from the Upper Columbia River, Washington, USA, to benthic invertebrates.

来自 PUBMED

作者:

Besser JMSteevens JKunz JLBrumbaugh WGIngersoll CGCox SMebane CBalistrieri LSinclair JMacDonald D

展开

摘要:

Sediments from the Upper Columbia River, Washington, USA, are contaminated with metals from smelting operations. We conducted short-term and long-term tests with the midge Chironomus dilutus and the amphipod Hyalella azteca and short-term tests with the freshwater mussel Lampsilis siliquoidea with 54 sediments from the Upper Columbia River to characterize thresholds for toxicity of metals to benthic invertebrates. Test sediments were screened for toxicity by comparisons with low-metal reference sediments. Toxic effects on amphipods occurred primarily in sediments from the upstream (riverine) reach, and toxic effects on midges occurred in sediments from both the upstream reach and the downstream (reservoir) reach. Little toxicity was observed in mussel tests. Toxicity thresholds (20% effect concentrations [EC20s]) for metals in sediment and porewater were estimated from logistic concentration-response models. Copper (Cu) concentrations in the simultaneously extracted metal fraction of sediments and bioavailable Cu in porewater, as characterized by biotic ligand models, had consistent associations with toxicity endpoints. Concentration-response models for sediment Cu produced EC20s for 6 endpoints, with long-term amphipod survival and reproduction being the most sensitive. A logistic regression model fitted to an endpoint sensitivity distribution for sediment Cu predicted that approximately one-half of the sediments tested would be toxic to at least one endpoint and that approximately 20% of test sediments would be toxic to more than half of the endpoints. These results indicate that sediments from the upstream reach of the Upper Columbia River, which contain high concentrations of metals associated with slags, cause a wide range of toxic effects in laboratory tests and are likely to have adverse effects on benthic invertebrate communities. Environ Toxicol Chem 2018;37:3102-3114. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

收起

展开

DOI:

10.1002/etc.4276

被引量:

4

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(566)

参考文献(0)

引证文献(4)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读