ECG strain pattern in hypertension is associated with myocardial cellular expansion and diffuse interstitial fibrosis: a multi-parametric cardiac magnetic resonance study.
In hypertension, the presence of left ventricular (LV) strain pattern on 12-lead electrocardiogram (ECG) carries adverse cardiovascular prognosis. The underlying mechanisms are poorly understood. We investigated whether hypertensive ECG strain is associated with myocardial interstitial fibrosis and impaired myocardial strain, assessed by multi-parametric cardiac magnetic resonance (CMR).
A total of 100 hypertensive patients [50 ± 14 years, male: 58%, office systolic blood pressure (SBP): 170 ± 30 mmHg, office diastolic blood pressure (DBP): 97 ± 14 mmHg) underwent ECG and 1.5T CMR and were compared with 25 normotensive controls (46 ± 14 years, 60% male, SBP: 124 ± 8 mmHg, DBP: 76 ± 7 mmHg). Native T1 and extracellular volume fraction (ECV) were calculated with the modified look-locker inversion-recovery sequence. Myocardial strain values were estimated with voxel-tracking software. ECG strain (n = 20) was associated with significantly higher indexed LV mass (LVM) (119 ± 32 vs. 80 ± 17 g/m2, P < 0.05) and ECV (30 ± 4 vs. 27 ± 3%, P < 0.05) compared with hypertensive subjects without ECG strain (n = 80). ECG strain subjects had significantly impaired circumferential strain compared with hypertensive subjects without ECG strain and controls (-15.2 ± 4.7 vs. -17.0 ± 3.3 vs. -17.3 ± 2.4%, P < 0.05, respectively). In subgroup analysis, comparing ECG strain subjects to hypertensive subjects with elevated LVM but no ECG strain, a significantly higher ECV (30 ± 4 vs. 28 ± 3%, P < 0.05) was still observed. Indexed LVM was the only variable independently associated with ECG strain in multivariate logistic regression analysis [odds ratio (95th confidence interval): 1.07 (1.02-1.12), P < 0.05).
In hypertension, ECG strain is a marker of advanced LVH associated with increased interstitial fibrosis and associated with significant myocardial circumferential strain impairment.
Rodrigues JC
,Amadu AM
,Ghosh Dastidar A
,McIntyre B
,Szantho GV
,Lyen S
,Godsave C
,Ratcliffe LE
,Burchell AE
,Hart EC
,Hamilton MC
,Nightingale AK
,Paton JF
,Manghat NE
,Bucciarelli-Ducci C
... -
《-》
Independent Echocardiographic Markers of Cardiovascular Involvement in Chronic Kidney Disease: The Value of Left Atrial Function and Volume.
Chronic kidney disease (CKD) is associated with increased cardiovascular mortality and morbidity, particularly ischemic heart disease and cardiomyopathy. Newer echocardiographic techniques such as myocardial strain analysis provides the opportunity to detect early myocardial dysfunction. The aim of this study was to examine echocardiographic parameters, in particular left atrial (LA) function and volume, in patients with CKD. A further aim was to determine echocardiographic parameters that are sensitive to detect cardiovascular involvement in early CKD.
Seventy-six patients with stage 3 CKD (estimated glomerular filtration rate, 30-59 mL/min/1.73 m(2)) with hypertension and/or diabetes mellitus, without any previous cardiac illness, were prospectively recruited. These patients were compared with subjects matched for age, sex, and risk factors (hypertension and/or diabetes mellitus) with normal renal function and 76 healthy age-matched control subjects. Two-dimensional strain analyses of the left atrium and left ventricle were performed. Comprehensive echocardiographic examinations were performed in all participants, and traditional echocardiographic parameters including indexed LA volume (LAVI) and two-dimensional strain analysis of the left ventricle and left atrium were performed in all participants. Differences among the three groups on demographic, clinical, and echocardiographic parameters were examined.
LA systolic strain (20.9 ± 6.3% vs 27.4 ± 7.9%, P < .0001) and systolic and late diastolic strain rates were altered in the CKD group, while early diastolic strain rate was similar to that in the risk factor-matched group. LAVI was significantly larger in the CKD group compared with the risk factor-matched group and healthy control subjects (38.5 ± 10 vs 31.2 ± 9 vs 22.3 ± 5 mL/m(2), P < .0001). LV strain as well as LV systolic and early diastolic strain rates were similar in the CKD and risk factor-matched groups. LV late diastolic strain rate, a surrogate measure of LA contractile function, was, however, reduced in the CKD group. Forward logistic regression analysis showed LA global strain to be the most sensitive predictor for the presence of CKD, followed by LAVI; though LV late diastolic strain rate was reduced in the CKD group, it was not an independent predictor. Furthermore, the addition of LA strain to traditional echocardiographic parameters significantly increased the predictive power to detect cardiovascular involvement (C statistic = 0.65 vs C statistic = 0.84, P < .0001). Increased LAVI, reduced left ventricular global strain, and the presence of CKD were independent predictors of LA strain, while left ventricular mass index, E/e' ratio, and the presence of CKD were predictors of LAVI.
LA strain and LAVI are more sensitive parameters than traditional echocardiographic parameters as well as left ventricular strain in patients with early CKD. LA strain and LAVI may be useful to detect myocardial involvement in stage 3 CKD, and LA alterations may be consequent to increased activation of the renin-angiotensin-aldosterone pathway, causing myocardial fibrosis in CKD.
Kadappu KK
,Abhayaratna K
,Boyd A
,French JK
,Xuan W
,Abhayaratna W
,Thomas L
... -
《-》
Myocardial extracellular volume expansion and the risk of recurrent atrial fibrillation after pulmonary vein isolation.
This study tested whether myocardial extracellular volume (ECV) is increased in patients with hypertension and atrial fibrillation (AF) undergoing pulmonary vein isolation and whether there is an association between ECV and post-procedural recurrence of AF.
Hypertension is associated with myocardial fibrosis, an increase in ECV, and AF. Data linking these findings are limited. T1 measurements pre-contrast and post-contrast in a cardiac magnetic resonance (CMR) study provide a method for quantification of ECV.
Consecutive patients with hypertension and recurrent AF referred for pulmonary vein isolation underwent a contrast CMR study with measurement of ECV and were followed up prospectively for a median of 18 months. The endpoint of interest was late recurrence of AF.
Patients had elevated left ventricular (LV) volumes, LV mass, left atrial volumes, and increased ECV (patients with AF, 0.34 ± 0.03; healthy control patients, 0.29 ± 0.03; p < 0.001). There were positive associations between ECV and left atrial volume (r = 0.46, p < 0.01) and LV mass and a negative association between ECV and diastolic function (early mitral annular relaxation [E'], r = -0.55, p < 0.001). In the best overall multivariable model, ECV was the strongest predictor of the primary outcome of recurrent AF (hazard ratio: 1.29; 95% confidence interval: 1.15 to 1.44; p < 0.0001) and the secondary composite outcome of recurrent AF, heart failure admission, and death (hazard ratio: 1.35; 95% confidence interval: 1.21 to 1.51; p < 0.0001). Each 10% increase in ECV was associated with a 29% increased risk of recurrent AF.
In patients with AF and hypertension, expansion of ECV is associated with diastolic function and left atrial remodeling and is a strong independent predictor of recurrent AF post-pulmonary vein isolation.
Neilan TG
,Mongeon FP
,Shah RV
,Coelho-Filho O
,Abbasi SA
,Dodson JA
,McMullan CJ
,Heydari B
,Michaud GF
,John RM
,Blankstein R
,Jerosch-Herold M
,Kwong RY
... -
《-》