SCOP: a novel scaffolding algorithm based on contig classification and optimization.
摘要:
Scaffolding is an essential step during the de novo sequence assembly process to infer the direction and order relationships between the contigs and make the sequence assembly results more continuous and complete. However, scaffolding still faces the challenges of repetitive regions in genome, sequencing errors and uneven sequencing depth. Moreover, the accuracy of scaffolding greatly depends on the quality of contigs. Generally, the existing scaffolding methods construct a scaffold graph, and then optimize the graph by deleting spurious edges. Nevertheless, due to the wrong joints between contigs, some correct edges connecting contigs may be deleted. In this study, we present a novel scaffolding method SCOP, which is the first method to classify the contigs and utilize the vertices and edges to optimize the scaffold graph. Specially, SCOP employs alignment features and GC-content of paired reads to evaluate the quality of contigs (vertices), and divide the contigs into three types (True, Uncertain and Misassembled), and then optimizes the scaffold graph based on the classification of contigs together with the alignment of edges. The experiment results on the datasets of GAGE-A and GAGE-B demonstrate that SCOP performs better than 12 other competing scaffolders. SCOP is publicly available for download at https://github.com/bioinfomaticsCSU/SCOP. Supplementary data are available at Bioinformatics online.
收起
展开
DOI:
10.1093/bioinformatics/bty773
被引量:
年份:
2019


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(179)
参考文献(0)
引证文献(3)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无