Sequential delivery of VEGF siRNA and paclitaxel for PVN destruction, anti-angiogenesis, and tumor cell apoptosis procedurally via a multi-functional polymer micelle.
摘要:
Co-delivery of chemotherapy drugs and VEGF siRNA (siVEGF) to control tumor growth has been a research hotspot for improving cancer treatment. Current systems co-deliver siVEGF and chemo drugs into tumor cells simultaneously. Although effective, these systems do not flow to the abnormal blood vessels around tumor cells (vascular niche, PVN), which play an important role in the metastasis and deterioration of the tumor. Thus, we custom-synthesized triblock copolymer poly(ε-caprolactone)-polyethyleneglycol-poly(L-histidine) (PCL-PEG-PHIS) with previously synthesized folate-PEG-PHIS to construct a targeted multifunctional polymer micelle (PTX/siVEGF-CPPs/TMPM) to sequentially deliver siVEGF-CPPs (disulfide bond-linked siVEGF and cell-penetrating peptides) and paclitaxel (PTX). The sequential delivery vesicles showed the anticipated three-layered TEM structure and dual-convertible (surface charge- and particle size-reversible) features in the tumor environment (pH 6.5), which guaranteed the sequential release of siVEGF-CPPs and PTX in the tumor extracellular environment and tumor cells, respectively. To mimic the in vivo tumor environment, a double cell model was employed by co-culturing HUVECs and MCF-7 cells. Improved cell endocytosis efficiency, VEGF gene silence efficacy, and in vitro anti-proliferation activity were achieved. An in vivo study on MCF-7 tumor-bearing female nude mice also indicated that sequential delivery vesicles could lead to significant induction of tumor cell apoptosis, loss of VEGF expression, and destruction of tumor blood vessels (PVN and neovascularization). These sequential delivery vesicles show potential as an effective co-delivery platform for siVEGF and chemo drugs to improve cancer therapy efficacy.
收起
展开
DOI:
10.1016/j.jconrel.2018.08.028
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(235)
参考文献(0)
引证文献(14)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无