Prognostic Value of a Long Non-coding RNA Signature in Localized Clear Cell Renal Cell Carcinoma.

来自 PUBMED

作者:

Qu LWang ZLChen QLi YMHe HWHsieh JJXue SWu ZJLiu BTang HXu XFXu FWang JBao YWang ABWang DYi XMZhou ZKShi CJZhong KSheng ZCZhou YLJiang JChu XYHe JGe JPZhang ZYZhou WQChen CYang JHSun YHWang LH

展开

摘要:

Long non-coding RNAs (lncRNAs) can be used as prognostic biomarkers in many types of cancer. We sought to establish an lncRNA signature to improve postoperative risk stratification for patients with localized clear cell renal cell carcinoma (ccRCC). Based on the RNA-seq data of 444 stage I-III ccRCC tumours from The Cancer Genome Atlas project, we built a four-lncRNA-based classifier using the least absolute shrinkage and selection operation (LASSO) Cox regression model in 222 randomly selected samples (training set) and validated the classifier in the remaining 222 samples (internal validation set). We confirmed this classifier in an external validation set of 88 patients with stage I-III ccRCC from a Japan cohort and using quantitative reverse transcription polymerase chain reaction (RT-PCR) in another three independent sets that included 1869 patients from China with stage I-III ccRCC. Univariable and multivariable Cox regression, Harrell's concordance index (c-index), and time-dependent receiver operating characteristic curves were used to evaluate the association of the classifier with overall survival, disease-specific survival, and disease-free survival. Using the LASSO Cox regression model, we built a classifier named RCClnc4 based on four lncRNAs: ENSG00000255774, ENSG00000248323, ENSG00000260911, and ENSG00000231666. In the RNA-seq and RT-PCR data sets, the RCClnc4 signature significantly stratified patients into high-risk versus low-risk groups in terms of clinical outcome across and within subpopulations and remained as an independent prognostic factor in multivariate analyses (hazard ratio range, 1.34 [95% confidence interval {CI}: 1.03-1.75; p=0.028] to 1.89 [95% CI, 1.55-2.31; p<0.001]) after adjusting for clinical and pathologic factors. The RCClnc4 signature achieved a higher accuracy (mean c-index, 0.72) than clinical staging systems such as TNM (mean c-index, 0.62) and the stage, size, grade, and necrosis (SSIGN) score (mean c-index, 0.64), currently reported prognostic signatures and biomarkers for the estimation of survival. When integrated with clinical characteristics, the composite clinical and lncRNA signature showed improved prognostic accuracy in all data sets (TNM + RCClnc4 mean c-index, 0.75; SSIGN + RCClnc4 score mean c-index, 0.75). The RCClnc4 classifier was able to identify a clinically significant number of both high-risk stage I and low-risk stage II-III patients. The RCClnc4 classifier is a promising and potential prognostic tool in predicting the survival of patients with stage I-III ccRCC. Combining the lncRNA classifier with clinical and pathological parameters allows for accurate risk assessment in guiding clinical management. The RCClnc4 classifier could facilitate patient management and treatment decisions.

收起

展开

DOI:

10.1016/j.eururo.2018.07.032

被引量:

83

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(1692)

参考文献(0)

引证文献(83)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读