All three IP(3) receptor subtypes generate Ca(2+) puffs, the universal building blocks of IP(3)-evoked Ca(2+) signals.
摘要:
All three subtypes of inositol 1,4,5-trisphosphate receptor (IP3R) are intracellular Ca2+ channels that are co-regulated by IP3 and Ca2+ This allows IP3Rs to evoke regenerative Ca2+ signals, the smallest of which are Ca2+ puffs that reflect the coordinated opening of a few clustered IP3Rs. We use total internal reflection microscopy (TIRF) microscopy to record Ca2+ signals in HEK cells expressing all three IP3R subtypes or a single native subtype. Ca2+ puffs are less frequent in cells expressing one IP3R subtype, commensurate with them expressing fewer IP3Rs than wild-type cells. However, all three IP3R subtypes generate broadly similar Ca2+ puffs with similar numbers of IP3Rs contributing to each. This suggests that IP3R clusters may be assembled by conserved mechanisms that generate similarly sized clusters across different IP3R expression levels. The Ca2+ puffs evoked by IP3R2 had slower kinetics and more prolonged durations, which may be due to IP3 binding with greater affinity to IP3R2. We conclude that Ca2+ puffs are the building blocks for the Ca2+ signals evoked by all IP3Rs.
收起
展开
DOI:
10.1242/jcs.220848
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(173)
参考文献(25)
引证文献(22)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无