Application of the biocopolymer preparation system, rapid BACpro® II kit, for mass-spectrometry-based bacterial identification from positive blood culture bottles by the MALDI Biotyper system.

来自 PUBMED

作者:

Tsuchida SMurata SMiyabe ASatoh MTakiwaki MAshizawa KTerada TIto DMatsushita KNomura F

展开

摘要:

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used for identification of microorganisms from positive blood cultures. Pretreatments to effectively remove non-bacterial components and selectively collect microorganisms are a prerequisite for successful identification, and a variety of home-brew and commercial protocols have been reported. Although commercially available kits, mainly the Sepsityper Kit, are increasingly used, the identification rates reported often are not satisfactory, particularly for Gram-positive isolates. We recently developed a method to collect bacteria from positive blood culture bottles using a polyallylamine-polystyrene copolymer that has been used in wastewater processing. This pretreatment protocol is now commercially available as the rapid BACpro® II kit (Nittobo Medical Co., Tokyo, Japan). The operation time required for processing using this novel kit is approximately 10 min, and the entire procedure can be completed within a biosafety cabinet. Since the performance of the rapid BACpro® II kit has not been tested using the MALDI Biotyper system, we prospectively evaluated the performance of the rapid BACpro® II kit as compared with the Sepsityper® kit. Performance of the rapid BACpro® II kit was evaluated using a total of 193 monomicrobial cases of positive blood culture. Medium from blood culture bottles was pretreated by the rapid BACpro® II kit or the Sepsityper® Kit, and isolated cells were subjected to direct identification by MS fingerprinting in parallel with conventional subculturing for reference identification. The overall MALDI-TOF MS-based identification rates with >1.7 score and >2.0 score obtained using the rapid BACpro® II kit were 99.5% and 80.8%, respectively, whereas those obtained using the Sepsityper® Kit were 89.1% and 68.4%, respectively (P < 0.05 for >1.7 and P < 0.05 for >2.0 by Pearsons's chi-square). In Gram-positive cases, the rapid BACpro® II kit gave identification rate of 100% with >1.7 score and 69.4% with >2.0 score, whereas there were 84.7% and 56.8%, respectively by the Sepsityper® Kit (P < 0.05 for >1.7). These results are preliminary, but considering that this new kit is easy to perform and the identification rates are promising, the rapid BACpro® II kit deserves assessment in a larger-scale study with a variety of platforms for MS-based bacterial identification.

收起

展开

DOI:

10.1016/j.mimet.2018.07.017

被引量:

6

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(165)

参考文献(0)

引证文献(6)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读