Effects of Fibronectin 1 on Cell Proliferation, Senescence and Apoptosis of Human Glioma Cells Through the PI3K/AKT Signaling Pathway.
The current study aimed to investigate the role by which fibronectin 1 (FN1) influences the cell cycle, senescence and apoptosis in human glioma cells through the PI3K/ AKT signaling pathway.
Differentially expressed genes (DEGs) were identified based on gene expression data (GSE12657, GSE15824 and GSE45921 datasets) and probe annotation files from Gene Expression Omnibus. The DEGs were identified in connection with gene ontology (GO) enrichment analysis and with the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The positive expression of the FN1 protein was detected by immunohistochemistry. The glioma cell lines U251 and T98G were selected and assigned into blank, negative control (NC) and siRNA-FN1 groups. A dual luciferase reporter gene assay was used to investigate the effects of FN1 on transcriptional activity through the PI3K/AKT signaling pathway. An MTT assay was applied for the detection of cell proliferation, while flow cytometry was employed for cell cycle stage and cellular apoptosis detection. β-galactosidase staining was utilized to detect cellular senescence, a scratch test was applied to evaluate cell migration, and a transwell assay was used to analyze cell invasion. Western blotting and qRT-PCR methods were used to detect the protein and mRNA expression levels, respectively, of the FN1 gene and the related genes in the PI3K/AKT pathway (PI3K, AKT and PTEN), the cell cycle (pRb, CDK4 and Cyclin D1) and cell senescence (p16 and p21) among the collected tissues and cells.
GSE12657 profiling revealed FN1 to be the most upregulated gene in glioma. Regarding the GSE12657 and GSE15824 datasets, FN1 gene expression was higher in glioma tissues than in normal tissues. GO enrichment analysis and KEGG pathway enrichment analysis indicated that FN1 is involved in the synthesis of extracellular matrix (ECM) components and the PI3K/AKT signaling pathway. Verification was provided, indicating the role played by the FN1 gene in the regulation of the PI3K/AKT signaling pathway, as silencing the FN1 gene was found to inhibit cell proliferation, promote cell apoptosis and senescence, and reduce migration and invasion through the down-regulation of FN1 gene expression and disruption of the PI3K-AKT signaling pathway.
The findings of this study provide evidence highlighting the prominent role played by FN1 in stimulating glioma growth, invasion, and survival through the activation of the PI3K/AKT signaling pathway.
Liao YX
,Zhang ZP
,Zhao J
,Liu JP
... -
《-》
MicroRNA-21 promotes glioma cell proliferation and inhibits senescence and apoptosis by targeting SPRY1 via the PTEN/PI3K/AKT signaling pathway.
Our study aims to investigate the effect of microRNA-21 (miR-21) on the proliferation, senescence, and apoptosis of glioma cells by targeting SPRY1 via the PTEN/PI3K/AKT signaling pathway.
Glioma tissues and brain tissues were collected for this study after surgical decompression for traumatic brain injury. RT-qPCR was employed to measure mRNA levels of miR-21, SPRY1, PTEN, PI3K, and AKT, and Western blotting was conducted to determine protein levels of SPRY1, PTEN, PI3K, AKT, p-AKT, Caspase-3, Caspase-9, P53, GSK3, and p-GSK3. Human glioma U87 cells were assigned into the blank, negative control (NC), miR-21 mimics, miR-21 inhibitors, siRNA-SPRY1, and miR-21 inhibitors + siRNA-SPRY1 groups, with human HEB cells serving as the normal group. Cell proliferation, cell cycle, and apoptosis were determined by MTT and flow cytometry, respectively.
Compared with control group, an increased expression of miR-21, PI3K, AKT, p-AKT, P53, and p-GSK3, and a decreased expression of SPRY1, PTEN, Caspase-3, and Caspase-9 were observed in the glioma group, and no significant differences were found in the expression of GSK3. SPRY1 was verified to be the target gene of miR-21. Compared with the blank and NC groups, levels of PI3K, AKT, p-AKT, P53, and p-GSK3 increased while levels of SPRY1, PTEN, Caspase-3, and Caspase-9 decreased in the miR-21 mimics and siRNA-SPRY1 groups; the miR-21 inhibitors group reversed the tendency; furthermore, the miR-21 inhibitors group showed decreased cell proliferation but promoted apoptosis, which were opposite to the results of the miR-21 mimics and siRNA-SPRY1 groups.
MicroRNA-21 might promote cell proliferation and inhibit cell senescence and apoptosis of human glioma cells by targeting SPRY1 via the PTEN/PI3K/AKT signaling pathway.
Chai C
,Song LJ
,Han SY
,Li XQ
,Li M
... -
《-》
Effect of microRNA-135a on Cell Proliferation, Migration, Invasion, Apoptosis and Tumor Angiogenesis Through the IGF-1/PI3K/Akt Signaling Pathway in Non-Small Cell Lung Cancer.
This study explored the ability of microRNA-135a (miR-135a) to influence cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3K/Akt signaling pathway in non-small cell lung cancer (NSCLC).
NSCLC tissues and adjacent normal tissues were collected from 138 NSCLC patients. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of miR-135a and IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 mRNA; western blotting was used to determine the expression levels of IGF-1, PI3K and Akt protein; and enzyme-linked immunosorbent assay (ELISA) was used to analyze the expression levels of VEGF, bFGF and IL-8 protein. Human NSCLC cell lines (A549, H460, and H1299) and the human bronchial epithelial cell line (HBE) were selected. A549 cells were assigned to blank, negative control (NC), miR-135a mimics, miR-135a inhibitors, IGF-1 siRNA and miR-135a inhibitors + IGF-1 siRNA groups. The following were performed: an MTT assay to assess cell proliferation, a scratch test to detect cell migration, a Transwell assay to measure cell invasion, and a flow cytometry to analyze cell apoptosis.
The expression level of miR-135a was lower while those of IGF-1, PI3K and Akt mRNA were higher in NSCLC tissues than in the adjacent normal tissues. Dual-luciferase reporter assay indicated IGF-1 as a target of miR-135a. The in vitro results showed that compared with the blank group, cell proliferation, migration and invasion were suppressed, mRNA and protein levels of IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 were reduced, and cell apoptosis was enhanced in the miR-135a mimics and IGF-1 siRNA groups. Compared with the IGF-1 siRNA group, cells in the miR-135a inhibitors + IGF-1 siRNA group demonstrated increased cell proliferation, migration and invasion, elevated mRNA and protein levels of IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 and reduced cell apoptosis.
These findings indicated that miR-135a promotes cell apoptosis and inhibits cell proliferation, migration, invasion and tumor angiogenesis by targeting IGF-1 gene through the IGF-1/PI3K/Akt signaling pathway in NSCLC.
Zhou Y
,Li S
,Li J
,Wang D
,Li Q
... -
《-》