RANK Deficiency Ameliorates Podocyte Injury by Suppressing Calcium/Calcineurin/ NFATc1 Signaling.

来自 PUBMED

作者:

Liang SZhang HDu YDou CLiu SZhang LChen YLi RMa JLi ZLin TZhao XZhang QWang WYe ZLiang XShi WZhang B

展开

摘要:

Podocyte injury and loss contribute to proteinuria, glomerulosclerosis and eventually kidney failure. Receptor activator of NF-κB (RANK) belongs to the TNF receptor superfamily, which plays a key role in the pathogenesis of podocyte injury. However, the mechanism underlying the effect of RANK in podocyte injury remains unclear. Here, we sought to explore the possible molecular mechanisms involved in podocyte injury caused by RANK. Immortalized mouse podocytes were treated with siRNA targeting RANK for 48 h or ionomycin for 24 h before harvest. Western blot, quantitative RT-PCR and immunofluorescence staining were used to evaluate the expression and function of RANK, nuclear factor of activated T cells c1 (NFATc1), transient receptor potential cation channel, subfamily C, member 6 (TRPC6) and calcineurin in podocytes. The Calcineurin Cellular Activity Assay kit was used to detect the phosphatase activity of calcineurin in cultured podocytes. A Ca2+ influx assay was performed to analyze alterations in Ca2+ entry under different conditions. Co-immunoprecipitation assays were used to observe the relationship between RANK and TRPC6. RANK mRNA and protein expression were markedly increased in injured podocytes (ionomycin stimulation). Further study found that translocation of NFATc1 to the nucleus was significantly reduced after knocking down RANK by siRNA. Meanwhile, we also demonstrated that loss of RANK suppressed the phosphatase activity of calcineurin and attenuated the ionomycin-induced increase in Ca2+ influx. In addition, we showed that RANK knockdown in cultured podocytes decreased TRPC6 protein expression. Co-immunoprecipitation experiments suggested that RANK binds to TRPC6 and that ionomycin enhanced the binding of RANK to TRPC6. Our findings demonstrated that RANK deficiency ameliorates podocyte injury by suppressing calcium/calcineurin/NFATc1 signaling, which may present a promising target for therapeutic intervention.

收起

展开

DOI:

10.1159/000492049

被引量:

3

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(149)

参考文献(0)

引证文献(3)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读