Generation of high quality of hepatocyte-like cells from induced pluripotent stem cells with Parp1 but lacking c-Myc.

来自 PUBMED

作者:

Huang CSLin HCLu KHWu WWYang YCYang YPChiang CHHsieh JHChang YLLee SD

展开

摘要:

Induced pluripotent stem cells (iPSCs) have a great potential for application in patient-specific therapy. The reprogramming method that does not involve c-Myc reduces tumorigenic risk, but also largely reduces the efficiency of generation of iPSCs, especially for those reprogrammed from damaged cells. Poly(ADP-ribose) polymerase 1 (Parp1) catalyzes a reaction of poly(ADP-ribosylation) and has been reported to enhance cell reprogramming. Using Oct-4/Sox2/Klf4/Parp1 (OSKP) reprogramming method, reprogramming factors plus Parp1 were capable of generation of iPSCs from adult fibroblasts and further toward to differentiate from iPSCs status into hepatocyte-like cells. Our results showed that Oct-4/Sox2/Klf4/Parp1 (OSKP)-derived iPSC exhibited regular pluripotent properties, long-term passages and more stable cellular-divided period. These OSKP-derived iPSCs can effectively differentiate into hepatocyte-like cells (OSKP-iPSC-Heps), and present high mRNA levels of Sox17, HNF3b, and HNF4a in OSKP-iPSC-Heps. The mature hepatic functions, including CYP3A4, LDL uptake, glycogen synthesis and urea secretion were analyzed and well detected in OSKP-iPSC-Heps on day 14 post-differentiation. In conclusion, we demonstrated that Parp1 promoted reprogramming process to generate the high quality of iPSCs, which could be used as a high quality source of hepatocytes.

收起

展开

DOI:

10.1016/j.jcma.2018.06.002

被引量:

4

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(259)

参考文献(0)

引证文献(4)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读