IL-6/STAT3 pathway intermediates M1/M2 macrophage polarization during the development of hepatocellular carcinoma.
Human cancers, including hepatocellular carcinoma (HCC), are characterized by a high degree of drug resistance in chemotherapy. However, the underlying molecular mechanism remains unknown. To the role of interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in the regulation of macrophage polarization, M1-type and M2-type macrophages were separately induced using lipopolysaccharide and interleukin-4 (IL-4), and we found that the IL-6/STAT3 signaling pathway was inhibited in M1-type macrophages but activated in M2-type macrophages. After anti-IL-6-treated macrophages were separately induced by lipopolysaccharide and IL-4, we found that the inhibition of IL-6/STAT3 signaling pathway turned macrophages into M1-type. Co-culture with M1-type macrophages reduced HCC cell viability, proliferation, invasion, migration, drug resistance, but increased apoptosis. Co-culture with M2-type macrophages yielded reciprocal results. The inhibition of IL-6/STAT3 signaling pathway mediated by anti-IL6 was shown to significantly enhance the effects of M1-type macrophages on HCC cells and rescue HCC cells from co-culture with M2-type macrophages. Tumor xenografts of co-cultured HCC cells were established in nude mice and the results showed that the inhibition of IL-6/STAT3 signaling pathway mediated by anti-IL6 was found to reduce tumor formation of HCC cells co-cultured with M1- or M2-type macrophages and lung metastases. The current study reveals a novel mechanism of IL-6/STAT3 signaling pathway in the regulation of macrophage polarization, thus contributing to HCC metastasis and drug resistance in chemotherapy.
Yin Z
,Ma T
,Lin Y
,Lu X
,Zhang C
,Chen S
,Jian Z
... -
《-》
Knockdown of liver cancer cell-secreted exosomal PSMA5 controls macrophage polarization to restrain cancer progression by blocking JAK2/STAT3 signaling.
Tumor-associated macrophages, a major component of the tumor microenvironment, undergo polarization into M2 macrophages (M2), and thereby exert an immunosuppressive effect to induce cancer metastasis. This study strives to uncover a molecular mechanism underlying this event in hepatocellular carcinoma (HCC).
Proteasome subunit alpha 5 (PSMA5) expression in liver hepatocellular carcinoma (LIHC) tissues and its association with LIHC patients were predicted using StarBase. PSMA5 level in human HCC cells was manipulated via transfection. Exosomes were isolated from HCC cells, and internalized into macrophages which were cocultured with HCC cells. Exosome internalization was observed after fluorescence labeling. HCC cell migration and invasion were evaluated by wound healing and Transwell assays. Xenograft assay was performed to investigate the role of PSMA5 in in vitro tumorigenesis. M2 polarization was assessed by enzyme-linked immunosorbent assay, quantitative reverse transcription polymerase chain reaction, and immunohistochemistry. PSMA5 expression in exosomes and Janus Kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) activation in macrophages and tumors were detected by Western blot analysis.
High PSMA5 expression was observed in LIHC tissues and associated with compromised survival of LIHC patients. PSMA5 knockdown inhibited HCC cell migration and invasion. PSMA5 knockdown in HCC cells downregulated PSMA5 level in exosomes from these HCC cells. HCC cell-isolated exosomes were successfully internalized into macrophages, and facilitated M2 polarization and JAK2/STAT3 pathway activation. HCC cell-secreted exosomal PSMA5 knockdown inhibited the exosome-induced effect on macrophages, and attenuated the promotion induced by exosome-treated macrophages on HCC cell migration/invasion and tumorigenesis along with in vivo M2 polarization and JAK2/STAT3 pathway activation.
HCC cell-secreted exosomal PSMA5 knockdown hinders M2 polarization to suppress cancer progression by restraining JAK2/STAT3 signaling.
Xie S
,Li X
,Yan J
,Yu H
,Chen S
,Chen K
... -
《Immunity Inflammation and Disease》
Astragaloside IV inhibits the progression of liver cancer by modulating macrophage polarization through the TLR4/NF-κB/STAT3 signaling pathway.
The purpose of the present research was to investigate the effect and mechanism of Astragaloside IV (AS-IV) on liver cancer progression in vivo and in vitro. Since M1 macrophages play an essential role in suppressing tumors, while M2 macrophages can accelerate the incidence and progression of tumors by promoting angiogenesis, increasing tumor cell invasion and inhibiting tumor immune response, the effect and mechanism of AS-IV on macrophage polarization and their role in the development of HCC was explored.
The effects of different concentrations of AS-IV (0, 50, 80, 100, 120, and 150 μM) on the capacity of hepatocellular carcinoma (HCC) cells to proliferate, migrate, and invade were detected. THP-1 cells were subjected to incubation in PMA for the purpose of stimulating differentiation into M0 macrophages. These macrophages were treated using LPS, IFN-γ, and PMA to produce M1 macrophages or treated using PMA, IL-13, and IL-4 to produce M2 macrophages. HCC cells and M1 or M2 macrophages were co-cultured for 48 hours, then the cell proliferation and migration were measured. The MTT assay was employed to determine cell viability. The capability of the cells to migrate and invade was investigated utilizing the Transwell assay and the wound healing assay. The expression of the M2 macrophage CD206 in macrophages treated with AS-IV was evaluated by flow cytometry. The expression of p-signal transducer and activator of transcription 3 (STAT3), phosphorylated (p)-NF-κB, and toll-like receptor 4 (TLR4) in macrophages was measured after treatment with AS-IV and M2 induction. To verify the function of the TLR4/NF-κB/STAT3 signaling pathway, TLR4 expression was knocked down in M2 macrophages, then the proliferation and migration and the M2 macrophage markers of HCC cells were measured. The effect of AS-IV on HCC in vivo was confirmed by a subcutaneous tumor mouse model. AS-IV was 2 was administered by gavage (0, 40, 80, and 100 mg/kg) for every 3 days. The tumor volume and weight were recorded.
AS-IV suppressed the capacities of HCC cells to proliferate, migrate, and invade in a dose-dependent way. M2 macrophages could promote the proliferative, migratory, and invasive ability of Huh-7 cells, which were suppressed by AS-IV. AS-IV directly attenuated the expression of M2 macrophage markers, indicating that AS-IV can inhibit macrophage M2 polarization. M2 macrophages stimulated the expression of p-STAT3, p-NF-κB, and TLR4, while AS-IV decreased the expression compared to the M2 group, indicating that AS-IV can regulate the TLR4/NF-κB/STAT3 signaling pathway. TLR4 small interfering RNA (siRNA/si) inhibited the proliferation of Huh-7 cells. The tumor volume, as well as weight of mice, was significantly reduced by AS-IV, indicating the antitumor impact of AS-IV in vivo.
AS-IV can inhibit the proliferative, invasive, and migratory ability of liver cancer through the suppression of the M2 polarization of macrophages, and the mechanism may involve the TLR4/NF-κB/STAT3 signaling pathway. The present study indicates that AS-IV could be an alternative drug to treat liver cancer, and the polarization of macrophages may be a novel treatment target for HCC.
Min L
,Wang H
,Qi H
《American Journal of Translational Research》