Cerebral small vessel disease, medial temporal lobe atrophy and cognitive status in patients with ischaemic stroke and transient ischaemic attack.
Small vessel disease (SVD) and Alzheimer's disease (AD) are two common causes of cognitive impairment and dementia, traditionally considered as distinct processes. The relationship between radiological features suggestive of AD and SVD was explored, and the association of each of these features with cognitive status at 1 year was investigated in patients with stroke or transient ischaemic attack.
Anonymized data were accessed from the Virtual International Stroke Trials Archive (VISTA). Medial temporal lobe atrophy (MTA; a marker of AD) and markers of SVD were rated using validated ordinal visual scales. Cognitive status was evaluated with the Mini Mental State Examination (MMSE) 1 year after the index stroke. Logistic regression models were used to investigate independent associations between (i) baseline SVD features and MTA and (ii) all baseline neuroimaging features and cognitive status 1 year post-stroke.
In all, 234 patients were included, mean (±SD) age 65.7 ± 13.1 years, 145 (62%) male. Moderate to severe MTA was present in 104 (44%) patients. SVD features were independently associated with MTA (P < 0.001). After adjusting for age, sex, disability after stroke, hypertension and diabetes mellitus, MTA was the only radiological feature independently associated with cognitive impairment, defined using thresholds of MMSE ≤ 26 (odds ratio 1.94; 95% confidence interval 1.28-2.94) and MMSE ≤ 23 (odds ratio 2.31; 95% confidence interval 1.48-3.62).
In patients with ischaemic cerebrovascular disease, SVD features are associated with MTA, which is a common finding in stroke survivors. SVD and AD type neurodegeneration coexist, but the AD marker MTA, rather than SVD markers, is associated with post-stroke cognitive impairment.
Arba F
,Quinn T
,Hankey GJ
,Ali M
,Lees KR
,Inzitari D
,VISTA Collaboration
... -
《-》
Alzheimer's and neurodegenerative disease biomarkers in blood predict brain atrophy and cognitive decline.
Although blood-based biomarkers have been identified as cost-effective and scalable alternatives to PET and CSF markers of neurodegenerative disease, little is known about how these biomarkers predict future brain atrophy and cognitive decline in cognitively unimpaired individuals. Using data from the Baltimore Longitudinal Study of Aging (BLSA), we examined whether plasma biomarkers of Alzheimer's disease (AD) pathology (amyloid-β [Aβ42/40], phosphorylated tau [pTau-181]), astrogliosis (glial fibrillary acidic protein [GFAP]), and neuronal injury (neurofilament light chain [NfL]) were associated with longitudinal brain volume loss and cognitive decline. Additionally, we determined whether sex, APOEε4 status, and plasma amyloid-β status modified these associations.
Plasma biomarkers were measured using Quanterix SIMOA assays. Regional brain volumes were measured by 3T MRI, and a battery of neuropsychological tests assessed five cognitive domains. Linear mixed effects models adjusted for demographic factors, kidney function, and intracranial volume (MRI analyses) were completed to relate baseline plasma biomarkers to baseline and longitudinal brain volume and cognitive performance.
Brain volume analyses included 622 participants (mean age ± SD: 70.9 ± 10.2) with an average of 3.3 MRI scans over 4.7 years. Cognitive performance analyses included 674 participants (mean age ± SD: 71.2 ± 10.0) with an average of 3.9 cognitive assessments over 5.7 years. Higher baseline pTau-181 was associated with steeper declines in total gray matter volume and steeper regional declines in several medial temporal regions, whereas higher baseline GFAP was associated with greater longitudinal increases in ventricular volume. Baseline Aβ42/40 and NfL levels were not associated with changes in brain volume. Lower baseline Aβ42/40 (higher Aβ burden) was associated with a faster decline in verbal memory and visuospatial performance, whereas higher baseline GFAP was associated with a faster decline in verbal fluency. Results were generally consistent across sex and APOEε4 status. However, the associations of higher pTau-181 with increasing ventricular volume and memory declines were significantly stronger among individuals with higher Aβ burden, as was the association of higher GFAP with memory decline.
Among cognitively unimpaired older adults, plasma biomarkers of AD pathology (pTau-181) and astrogliosis (GFAP), but not neuronal injury (NfL), serve as markers of future brain atrophy and cognitive decline.
Dark HE
,An Y
,Duggan MR
,Joynes C
,Davatzikos C
,Erus G
,Lewis A
,Moghekar AR
,Resnick SM
,Walker KA
... -
《Alzheimers Research & Therapy》
MarkVCID cerebral small vessel consortium: I. Enrollment, clinical, fluid protocols.
The concept of vascular contributions to cognitive impairment and dementia (VCID) derives from more than two decades of research indicating that (1) most older individuals with cognitive impairment have post mortem evidence of multiple contributing pathologies and (2) along with the preeminent role of Alzheimer's disease (AD) pathology, cerebrovascular disease accounts for a substantial proportion of this contribution. Contributing cerebrovascular processes include both overt strokes caused by etiologies such as large vessel occlusion, cardioembolism, and embolic infarcts of unknown source, and frequently asymptomatic brain injuries caused by diseases of the small cerebral vessels. Cerebral small vessel diseases such as arteriolosclerosis and cerebral amyloid angiopathy, when present at moderate or greater pathologic severity, are independently associated with worse cognitive performance and greater likelihood of dementia, particularly in combination with AD and other neurodegenerative pathologies. Based on this evidence, the US National Alzheimer's Project Act explicitly authorized accelerated research in vascular and mixed dementia along with frontotemporal and Lewy body dementia and AD itself. Biomarker development has been consistently identified as a key step toward translating scientific advances in VCID into effective prevention and treatment strategies. Validated biomarkers can serve a range of purposes in trials of candidate interventions, including (1) identifying individuals at increased VCID risk, (2) diagnosing the presence of cerebral small vessel disease or specific small vessel pathologies, (3) stratifying study participants according to their prognosis for VCID progression or treatment response, (4) demonstrating an intervention's target engagement or pharmacodynamic mechanism of action, and (5) monitoring disease progression during treatment. Effective biomarkers allow academic and industry investigators to advance promising interventions at early stages of development and discard interventions with low success likelihood. The MarkVCID consortium was formed in 2016 with the goal of developing and validating fluid- and imaging-based biomarkers for the cerebral small vessel diseases associated with VCID. MarkVCID consists of seven project sites and a central coordinating center, working with the National Institute of Neurologic Diseases and Stroke and National Institute on Aging under cooperative agreements. Through an internal selection process, MarkVCID has identified a panel of 11 candidate biomarker "kits" (consisting of the biomarker measure and the clinical and cognitive data used to validate it) and established a range of harmonized procedures and protocols for participant enrollment, clinical and cognitive evaluation, collection and handling of fluid samples, acquisition of neuroimaging studies, and biomarker validation. The overarching goal of these protocols is to generate rigorous validating data that could be used by investigators throughout the research community in selecting and applying biomarkers to multi-site VCID trials. Key features of MarkVCID participant enrollment, clinical/cognitive testing, and fluid biomarker procedures are summarized here, with full details in the following text, tables, and supplemental material, and a description of the MarkVCID imaging biomarker procedures in a companion paper, "MarkVCID Cerebral small vessel consortium: II. Neuroimaging protocols." The procedures described here address a range of challenges in MarkVCID's design, notably: (1) acquiring all data under informed consent and enrollment procedures that allow unlimited sharing and open-ended analyses without compromising participant privacy rights; (2) acquiring the data in a sufficiently wide range of study participants to allow assessment of candidate biomarkers across the various patient groups who might ultimately be targeted in VCID clinical trials; (3) defining a common dataset of clinical and cognitive elements that contains all the key outcome markers and covariates for VCID studies and is realistically obtainable during a practical study visit; (4) instituting best fluid-handling practices for minimizing avoidable sources of variability; and (5) establishing rigorous procedures for testing the reliability of candidate fluid-based biomarkers across replicates, assay runs, sites, and time intervals (collectively defined as the biomarker's instrumental validity). Participant Enrollment Project sites enroll diverse study cohorts using site-specific inclusion and exclusion criteria so as to provide generalizable validation data across a range of cognitive statuses, risk factor profiles, small vessel disease severities, and racial/ethnic characteristics representative of the diverse patient groups that might be enrolled in a future VCID trial. MarkVCID project sites include both prospectively enrolling centers and centers providing extant data and samples from preexisting community- and population-based studies. With approval of local institutional review boards, all sites incorporate MarkVCID consensus language into their study documents and informed consent agreements. The consensus language asks prospectively enrolled participants to consent to unrestricted access to their data and samples for research analysis within and outside MarkVCID. The data are transferred and stored as a de-identified dataset as defined by the Health Insurance Portability and Accountability Act Privacy Rule. Similar human subject protection and informed consent language serve as the basis for MarkVCID Research Agreements that act as contracts and data/biospecimen sharing agreements across the consortium. Clinical and Cognitive Data Clinical and cognitive data are collected across prospectively enrolling project sites using common MarkVCID instruments. The clinical data elements are modified from study protocols already in use such as the Alzheimer's Disease Center program Uniform Data Set Version 3 (UDS3), with additional focus on VCID-related items such as prior stroke and cardiovascular disease, vascular risk factors, focal neurologic findings, and blood testing for vascular risk markers and kidney function including hemoglobin A1c, cholesterol subtypes, triglycerides, and creatinine. Cognitive assessments and rating instruments include the Clinical Dementia Rating Scale, Geriatric Depression Scale, and most of the UDS3 neuropsychological battery. The cognitive testing requires ≈60 to 90 minutes. Study staff at the prospectively recruiting sites undergo formalized training in all measures and review of their first three UDS3 administrations by the coordinating center. Collection and Handling of Fluid Samples Fluid sample types collected for MarkVCID biomarker kits are serum, ethylenediaminetetraacetic acid-plasma, platelet-poor plasma, and cerebrospinal fluid (CSF) with additional collection of packed cells to allow future DNA extraction and analyses. MarkVCID fluid guidelines to minimize variability include fasting morning fluid collections, rapid processing, standardized handling and storage, and avoidance of CSF contact with polystyrene. Instrumental Validation for Fluid-Based Biomarkers Instrumental validation of MarkVCID fluid-based biomarkers is operationally defined as determination of intra-plate and inter-plate repeatability, inter-site reproducibility, and test-retest repeatability. MarkVCID study participants both with and without advanced small vessel disease are selected for these determinations to assess instrumental validity across the full biomarker assay range. Intra- and inter-plate repeatability is determined by repeat assays of single split fluid samples performed at individual sites. Inter-site reproducibility is determined by assays of split samples distributed to multiple sites. Test-retest repeatability is determined by assay of three samples acquired from the same individual, collected at least 5 days apart over a 30-day period and assayed on a single plate. The MarkVCID protocols are designed to allow direct translation of the biomarker validation results to multicenter trials. They also provide a template for outside groups to perform analyses using identical methods and therefore allow direct comparison of results across studies and centers. All MarkVCID protocols are available to the biomedical community and intended to be shared. In addition to the instrumental validation procedures described here, each of the MarkVCID kits will undergo biological validation to determine whether the candidate biomarker measures important aspects of VCID such as cognitive function. Analytic methods and results of these validation studies for the 11 MarkVCID biomarker kits will be published separately. The results of this rigorous validation process will ultimately determine each kit's potential usefulness for multicenter interventional trials aimed at preventing or treating small vessel disease related VCID.
Wilcock D
,Jicha G
,Blacker D
,Albert MS
,D'Orazio LM
,Elahi FM
,Fornage M
,Hinman JD
,Knoefel J
,Kramer J
,Kryscio RJ
,Lamar M
,Moghekar A
,Prestopnik J
,Ringman JM
,Rosenberg G
,Sagare A
,Satizabal CL
,Schneider J
,Seshadri S
,Sur S
,Tracy RP
,Yasar S
,Williams V
,Singh H
,Mazina L
,Helmer KG
,Corriveau RA
,Schwab K
,Kivisäkk P
,Greenberg SM
,MarkVCID Consortium
... -
《-》