Part 2: Dynamic mixed beam radiotherapy (DYMBER): Photon dynamic trajectories combined with modulated electron beams.

来自 PUBMED

作者:

Mueller SManser PVolken WFrei DKueng RHerrmann EElicin OAebersold DMStampanoni MFMFix MK

展开

摘要:

The purpose of this study was to develop a treatment technique for dynamic mixed beam radiotherapy (DYMBER) utilizing increased degrees of freedom (DoF) of a conventional treatment unit including different particle types (photons and electrons), intensity and energy modulation and dynamic gantry, table, and collimator rotations. A treatment planning process has been developed to create DYMBER plans combining photon dynamic trajectories (DTs) and step and shoot electron apertures collimated with the photon multileaf collimator (pMLC). A gantry-table path is determined for the photon DTs with minimized overlap of the organs at risk (OARs) with the target. In addition, an associated dynamic collimator rotation is established with minimized area between the pMLC leaves and the target contour. pMLC sequences of photon DTs and electron pMLC apertures are then simultaneously optimized using direct aperture optimization (DAO). Subsequently, the final dose distribution of the electron pMLC apertures is calculated using the Swiss Monte Carlo Plan (SMCP). The pMLC sequences of the photon DTs are then re-optimized with a finer control point resolution and with the final electron dose distribution taken into account. Afterwards, the final photon dose distribution is calculated also using the SMCP and summed together with the one of the electrons. This process is applied for a brain and two head and neck cases. The resulting DYMBER dose distributions are compared to those of dynamic trajectory radiotherapy (DTRT) plans consisting only of photon DTs and clinically applied VMAT plans. Furthermore, the deliverability of the DYMBER plans is verified in terms of dosimetric accuracy, delivery time and collision avoidance. For this purpose, The DYMBER plans are delivered to Gafchromic EBT3 films placed in an anthropomorphic head phantom on a Varian TrueBeam linear accelerator. For each case, the dose homogeneity in the target is similar or better for DYMBER compared to DTRT and VMAT. Averaged over all three cases, the mean dose to the parallel OARs is 16% and 28% lower, D2% to the serial OARs is 17% and 37% lower and V10% to normal tissue is 12% and 4% lower for the DYMBER plans compared to the DTRT and VMAT plans, respectively. The DYMBER plans are delivered without collision and with a 4-5 min longer delivery time than the VMAT plans. The absolute dose measurements are compared to calculation by gamma analysis using 2% (global)/2 mm criteria with passing rates of at least 99%. A treatment technique for DYMBER has been successfully developed and verified for its deliverability. The dosimetric superiority of DYMBER over DTRT and VMAT indicates utilizing increased DoF to be the key to improve brain and head and neck radiation treatments in future.

收起

展开

DOI:

10.1002/mp.13085

被引量:

4

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(102)

参考文献(0)

引证文献(4)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读