Dosimetric Evaluation of Incorporating Patient Geometric Variations Into Adaptive Plan Optimization Through Probabilistic Treatment Planning in Head and Neck Cancers.

来自 PUBMED

作者:

Liu QLiang JZhou DKrauss DJChen PYYan D

展开

摘要:

Four-dimensional (4D) adaptive radiation therapy (ART) treatment planning is an alternative to the conventional margin-based treatment planning approach. In 4D ART, interfraction patient geometric variations, gathered from computed tomography (CT) or cone beam CT (CBCT) images acquired during the patient treatment course, are directly incorporated into the adaptive plan optimization using a probabilistic treatment planning method. The goal of the present planning study was to evaluate the dosimetric differences between 4D ART and conventional margin-based adaptive planning strategies for head and neck cancers. In addition, we examined whether the dose differences achieved with 4D ART would translate into clinically relevant toxicity reductions using the existing normal tissue complication probability (NTCP) models. For 18 head and neck cancer patients, the treatment plans were retrospectively generated for 4 different treatment strategies, including a solely image guided radiation therapy (IGRT) strategy (IGRT-only), 2 conventional adaptive treatment planning strategies using 3- and 0-mm planning target volume (PTV) margins, and the 4D ART strategy. In the IGRT-only strategy, a conventional 3-mm PTV margin treatment plan was applied for the entire treatment course. In the 2 conventional adaptive strategies, 2 new treatment plans were generated during the treatment course using diagnostic planning CT scans acquired after the 10th and 22nd fractions. The 4D ART followed the same adaptive schedule, except that the 4D adaptive plan was generated using 5 CBCT images acquired during the 5 most recent treatment fractions. For each strategy, the actual delivered dose for the entire treatment course was constructed by calculating the daily doses on 35 CBCT scans, deforming back to the pretreatment planning CT scan, and accumulating over all 35 fractions. The target coverage was evaluated using the percentage of target volume receiving ≥100% of the prescription dose (V100%) and the minimum dose to 99% of the target volume (D99). It was considered adequate if the V100% was ≥95% and the dose deficit in D99 was ≤2 Gy (with respect to the prescription dose). For each strategy, the dose received by the organs at risk (OARs) was also evaluated, and the corresponding NTCP values were subsequently calculated using 3 NTCP models. Adequate target coverage was achieved for the primary clinical target volume (CTV1) and elective nodal CTV (CTV2) with a 3-mm PTV margin, regardless of adaptation. The 3-mm ART plan reduced the OAR mean dose by 1 to 2 Gy compared with the IGRT-only plan. The 0-mm ART plan further reduced the OAR dose by another 2 to 3 Gy at the expense of target coverage: 3 and 1 patient had V100% <95%, and 6 and 5 patients had a >2 Gy dose deficit in D99 for the CTV1 and CTV2, respectively. Use of 4D ART improved target coverage and attained OAR sparing similar to that with 0-mm ART. The number of patients with V100% <95% and >2 Gy D99 deficit decreased to 0 and 0 for CTV1 and 0 and 2 for CTV2, respectively. The NTCP calculations suggested that 4D ART could benefit a substantial portion of patients compared with IGRT-only because 17 and 12 patients had ≥5% and ≥10% NTCP reductions for parotid toxicity and 18 and 3 patients had ≥5% and ≥10% NTCP reductions for swallowing toxicity, respectively. Compared with margin-based adaptive planning strategies, 4D ART provides a better balance between target coverage and OAR sparing. NTCP estimation predicted for theoretical clinical benefits that warrant further clinical validation.

收起

展开

DOI:

10.1016/j.ijrobp.2018.03.062

被引量:

10

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(2098)

参考文献(0)

引证文献(10)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读