Comparative analysis of two porcine kidney decellularization methods for maintenance of functional vascular architectures.

来自 PUBMED

作者:

Zambon JPKo IKAbolbashari MHuling JClouse CKim THSmith CAtala AYoo JJ

展开

摘要:

Kidney transplantation is currently the only definitive solution for the treatment of end-stage renal disease (ESRD), however transplantation is severely limited by the shortage of available donor kidneys. Recent progress in whole organ engineering based on decellularization/recellularization techniques has enabled pre-clinical in vivo studies using small animal models; however, these in vivo studies have been limited to short-term assessments. We previously developed a decellularization system that effectively removes cellular components from porcine kidneys. While functional re-endothelialization on the porcine whole kidney scaffold was able to improve vascular patency, as compared to the kidney scaffold only, the duration of patency lasted only a few hours. In this study, we hypothesized that significant damage in the microvasculatures within the kidney scaffold resulted in the cessation of blood flow, and that thorough investigation is necessary to accurately evaluate the vascular integrity of the kidney scaffolds. Two decellularization protocols [sodium dodecyl sulfate (SDS) with DNase (SDS + DNase) or Triton X-100 with SDS (TRX + SDS)] were used to evaluate and optimize the levels of vascular integrity within the kidney scaffold. Results from vascular analysis studies using vascular corrosion casting and angiograms demonstrated that the TRX + SDS method was able to better maintain intact and functional microvascular architectures such as glomeruli within the acellular matrices than that by the SDS + DNase treatment. Importantly, in vitro blood perfusion of the re-endothelialized kidney construct revealed improved vascular function of the scaffold by TRX + SDS treatment compared with the SDS + DNase. Our results suggest that the optimized TRX + SDS decellularization method preserves kidney-specific microvasculatures and may contribute to long-term vascular patency following implantation. Kidney transplantation is the only curative therapy for patients with end-stage renal disease (ESRD). However, in the United States, the supply of donor kidneys meets less than one-fifth of the demand; and those patients that receive a donor kidney need life-long immunosuppressive therapy to avoid organ rejection. In the last two decades, regenerative medicine and tissue engineering have emerged as an attractive alternative to overcome these limitations. In 2013, Song et al. published the first experimental orthotopic transplantation of a bioengineering kidney in rodents. In this study, they demonstrated evidences of kidney tissue regeneration and partial function restoration. Despite these initial promising results, there are still many challenges to achieve long-term blood perfusion without graft thrombosis. In this paper, we demonstrated that perfusion of detergents through the renal artery of porcine kidneys damages the glomeruli microarchitecture as well as peritubular capillaries. Modifying dynamic parameters such as flow rate, detergent concentration, and decellularization time, we were able to establish an optimized decellularization protocol with no evidences of disruption of glomeruli microarchitecture. As a proof of concept, we recellularized the kidney scaffolds with endothelial cells and in vitro perfused whole porcine blood successfully for 24 h with no evidences of thrombosis.

收起

展开

DOI:

10.1016/j.actbio.2018.06.004

被引量:

21

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(425)

参考文献(0)

引证文献(21)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读