Longissimus dorsi muscle transcriptomic analysis of Yunling and Chinese simmental cattle differing in intramuscular fat content and fatty acid composition.

来自 PUBMED

作者:

Zhang HMXia HLJiang HRMao YJQu KXHuang BZGong YCYang ZP

展开

摘要:

Intramuscular fat (IMF) content and fatty acid (FA) composition vary significantly across beef cattle breeds, which play an important role in taste and nutritional value. However, the molecular mechanisms underlying these phenotypic differences remain unknown. The present study compared meat quality traits between Yunling cattle and Chinese Simmental cattle. Yunling cattle showed a lower IMF content and proportion of monounsaturated fatty acids (MUFA), as well as higher proportions of saturated fatty acids (SFA), polyunsaturated fatty acids (PUFA), and short-chain fatty acids (sc-FA) in the longissimus dorsi (LD) muscle than Chinese Simmental cattle. To further identify the candidate genes and pathways responsible for these phenotypic differences, the transcriptome of LD muscle from the two breeds were measured using RNA-seq. A total of 1347 differentially expressed genes were identified. The major metabolic pathways that were differentially modulated were lipolysis and glycometabolism. Yunling cattle showed a higher expression of lipolysis genes (ALDH9A1, ACSL5, ACADM, ACAT2, ACOT2) and a lower expression of genes related to glycometabolism (PGM1, GALM, PGM1, GPI, LDHA). This research identified candidate genes and pathways for IMF content and FA composition in the LD muscle of beef cattle, which may facilitate the design of new selection strategies to improve meat quality.

收起

展开

DOI:

10.1139/gen-2017-0164

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(427)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读