-
Longissimus dorsi muscle transcriptomic analysis of Yunling and Chinese simmental cattle differing in intramuscular fat content and fatty acid composition.
Intramuscular fat (IMF) content and fatty acid (FA) composition vary significantly across beef cattle breeds, which play an important role in taste and nutritional value. However, the molecular mechanisms underlying these phenotypic differences remain unknown. The present study compared meat quality traits between Yunling cattle and Chinese Simmental cattle. Yunling cattle showed a lower IMF content and proportion of monounsaturated fatty acids (MUFA), as well as higher proportions of saturated fatty acids (SFA), polyunsaturated fatty acids (PUFA), and short-chain fatty acids (sc-FA) in the longissimus dorsi (LD) muscle than Chinese Simmental cattle. To further identify the candidate genes and pathways responsible for these phenotypic differences, the transcriptome of LD muscle from the two breeds were measured using RNA-seq. A total of 1347 differentially expressed genes were identified. The major metabolic pathways that were differentially modulated were lipolysis and glycometabolism. Yunling cattle showed a higher expression of lipolysis genes (ALDH9A1, ACSL5, ACADM, ACAT2, ACOT2) and a lower expression of genes related to glycometabolism (PGM1, GALM, PGM1, GPI, LDHA). This research identified candidate genes and pathways for IMF content and FA composition in the LD muscle of beef cattle, which may facilitate the design of new selection strategies to improve meat quality.
Zhang HM
,Xia HL
,Jiang HR
,Mao YJ
,Qu KX
,Huang BZ
,Gong YC
,Yang ZP
... -
《-》
-
Analysis of longissimus muscle quality characteristics and associations with DNA methylation status in cattle.
As cattle represent one of the most important livestock species for meat production, control of muscle development in regards to quality is an important research focus.
In this study, the phenotypic quality traits and its associations with DNA methylation levels of the longissimus muscle in two cattle breeds were studied.
The pH value, water loss rate, fat and protein and fatty acid content were measured in three beef cattle breeds of longissimus mucle; The longissimus mucle was analyzed by MethylRAD-seq and RNA-seq. The differentially methylated and differentially expressed related genes were subjected to BSP.
Methylation status of longissimus mucle was analyzed by MethylRAD-seq. Compared with Simmental, there were 39 differentially methylated and expressed genes in muscle of Yunling cattle, and 123 differentially methylated and expressed genes in Wenshan muscle. A combined analysis of MethylRAD-seq and RNA-seq results revealed differential methylation and expression level of 18 genes between Simmental and Wenshan cattle, and 14 genes between Simmental and Yunling cattle. In addition, 28 genes were differentially methylated between Wenshan and Yunling cattle. Results of promoter methylation analysis of ACAD11, FADS6 and FASN showed that the overall degree of DNA methylation of FADS6 and FASN was negatively correlated with their expression levels. Methylation level of FASN in Simmental was greater than Yunling and Wenshan. The degree of methylation at the FADS6 CpG4 site was significantly higher in Simmental than that in Yunling. The levels of methylation at the CpG7 locus of the Simmental and Yunling breeds were greater than Wenshan cattle. A negative correlation was detected between the methylation levels and the expression of FASN CpG1, CpG2, CpG3, CpG5, CpG7, and CpG10.
The functional and molecular regulatory mechanism of the genes related to meat quality can be revealed systematically from aspects of the genetic and epigenetic regulation. These studies will help to further explore the molecular mechanisms and phenotypic differences that regulate growth and quality of different breeds of cattle.
Chen Z
,Chu S
,Xu X
,Jiang J
,Wang W
,Shen H
,Li M
,Zhang H
,Mao Y
,Yang Z
... -
《-》
-
Fatty acid and transcriptome profiling of longissimus dorsi muscles between pig breeds differing in meat quality.
Fat and lean pig breeds show obvious differences in meat quality characteristics including the fatty acid composition of muscle. However, the molecular mechanism underlying these phenotypes differences remains unknown. This study compared meat quality traits between Lantang (a Chinese indigenous breed) and Landrace (a typical lean breed). The Lantang pigs showed higher L* values and intramuscular fat content, lower pH(45min), pH(24h) and shear force in longissimus dorsi (LD) muscle than Landrace (P < 0.05). Fatty acid analysis demonstrated the lower monounsaturated fatty acids (MUFA) and higher polyunsaturated fatty acids (PUFA) percentage in Lantang LD than that in Landrace LD (P < 0.05). To further identify candidate genes for fatty acid composition, the transcriptome of LD muscle from the two breeds were measured by microarrays. There were 586 transcripts differentially expressed, of which 267 transcripts were highly expressed in Lantang pigs. After the validation by real-time quantitative PCR, 13 genes were determined as candidate genes for fatty acid composition of muscle, including Stearoyl-CoA desaturase (SCD). Then, a SCD over-expression plasmid was transfected into C2C12 cells to reveal the effect of SCD on the fatty acid composition in vitro. The results showed that SCD over-expression significantly increased PUFA proportion, while reduced that of saturated fatty acids (SFA) in C2C12 cells (P < 0.05). In summary, this study compared the differences of fatty acid composition and transcriptome in two breeds differing in meat quality, and further identified the novel role of SCD in the regulation of PUFA deposition.
Yu K
,Shu G
,Yuan F
,Zhu X
,Gao P
,Wang S
,Wang L
,Xi Q
,Zhang S
,Zhang Y
,Li Y
,Wu T
,Yuan L
,Jiang Q
... -
《International Journal of Biological Sciences》
-
Gene expression profile of intramuscular muscle in Nellore cattle with extreme values of fatty acid.
Fatty acid type in beef can be detrimental to human health and has received considerable attention in recent years. The aim of this study was to identify differentially expressed genes in longissimus thoracis muscle of 48 Nellore young bulls with extreme phenotypes for fatty acid composition of intramuscular fat by RNA-seq technique.
Differential expression analyses between animals with extreme phenotype for fatty acid composition showed a total of 13 differentially expressed genes for myristic (C14:0), 35 for palmitic (C16:0), 187 for stearic (C18:0), 371 for oleic (C18:1, cis-9), 24 for conjugated linoleic (C18:2 cis-9, trans11, CLA), 89 for linoleic (C18:2 cis-9,12 n6), and 110 genes for α-linolenic (C18:3 n3) fatty acids. For the respective sums of the individual fatty acids, 51 differentially expressed genes for saturated fatty acids (SFA), 336 for monounsaturated (MUFA), 131 for polyunsaturated (PUFA), 92 for PUFA/SFA ratio, 55 for ω3, 627 for ω6, and 22 for ω6/ω3 ratio were identified. Functional annotation analyses identified several genes associated with fatty acid metabolism, such as those involved in intra and extra-cellular transport of fatty acid synthesis precursors in intramuscular fat of longissimus thoracis muscle. Some of them must be highlighted, such as: ACSM3 and ACSS1 genes, which work as a precursor in fatty acid synthesis; DGAT2 gene that acts in the deposition of saturated fat in the adipose tissue; GPP and LPL genes that support the synthesis of insulin, stimulating both the glucose synthesis and the amino acids entry into the cells; and the BDH1 gene, which is responsible for the synthesis and degradation of ketone bodies used in the synthesis of ATP.
Several genes related to lipid metabolism and fatty acid composition were identified. These findings must contribute to the elucidation of the genetic basis to improve Nellore meat quality traits, with emphasis on human health. Additionally, it can also contribute to improve the knowledge of fatty acid biosynthesis and the selection of animals with better nutritional quality.
Berton MP
,Fonseca LF
,Gimenez DF
,Utembergue BL
,Cesar AS
,Coutinho LL
,de Lemos MV
,Aboujaoude C
,Pereira AS
,Silva RM
,Stafuzza NB
,Feitosa FL
,Chiaia HL
,Olivieri BF
,Peripolli E
,Tonussi RL
,Gordo DM
,Espigolan R
,Ferrinho AM
,Mueller LF
,de Albuquerque LG
,de Oliveira HN
,Duckett S
,Baldi F
... -
《BMC GENOMICS》
-
Genetic correlation estimates between beef fatty acid profile with meat and carcass traits in Nellore cattle finished in feedlot.
The objective of this study was to estimate the genetic-quantitative relationships between the beef fatty acid profile with the carcass and meat traits of Nellore cattle. A total of 1826 bulls finished in feedlot conditions and slaughtered at 24 months of age on average were used. The following carcass and meat traits were analysed: subcutaneous fat thickness (BF), shear force (SF) and total intramuscular fat (IMF). The fatty acid (FA) profile of the Longissimus thoracis samples was determined. Twenty-five FAs (18 individuals and seven groups of FAs) were selected due to their importance for human health. The animals were genotyped with the BovineHD BeadChip and, after quality control for single nucleotide polymorphisms (SNPs), only 470,007 SNPs from 1556 samples remained. The model included the random genetic additive direct effect, the fixed effect of the contemporary group and the animal's slaughter age as a covariable. The (co)variances and genetic parameters were estimated using the REML method, considering an animal model (single-step GBLUP). A total of 25 multi-trait analyses, with four traits, were performed considering SF, BF and IMF plus each individual FA. The heritability estimates for individual saturated fatty acids (SFA) varied from 0.06 to 0.65, for monounsaturated fatty acids (MUFA) it varied from 0.02 to 0.14 and for polyunsaturated fatty acids (PUFA) it ranged from 0.05 to 0.68. The heritability estimates for Omega 3, Omega 6, SFA, MUFA and PUFA sum were low to moderate, varying from 0.09 to 0.20. The carcass and meat traits, SF (0.06) and IMF (0.07), had low heritability estimates, while BF (0.17) was moderate. The genetic correlation estimates between SFA sum, MUFA sum and PUFA sum with BF were 0.04, 0.64 and -0.41, respectively. The genetic correlation estimates between SFA sum, MUFA sum and PUFA sum with SF were 0.29, -0.06 and -0.04, respectively. The genetic correlation estimates between SFA sum, MUFA sum and PUFA sum with IMF were 0.24, 0.90 and -0.67, respectively. The selection to improve meat tenderness in Nellore cattle should not change the fatty acid composition in beef, so it is possible to improve this attribute without affecting the nutritional beef quality in zebu breeds. However, selection for increased deposition of subcutaneous fat thickness and especially the percentage of intramuscular fat should lead to changes in the fat composition, highlighting a genetic antagonism between meat nutritional value and acceptability by the consumer.
Feitosa FL
,Olivieri BF
,Aboujaoude C
,Pereira AS
,de Lemos MV
,Chiaia HL
,Berton MP
,Peripolli E
,Ferrinho AM
,Mueller LF
,Mazalli MR
,de Albuquerque LG
,de Oliveira HN
,Tonhati H
,Espigolan R
,Tonussi RL
,de Oliveira Silva RM
,Gordo DG
,Magalhães AF
,Aguilar I
,Baldi F
... -
《-》