LncRNA-HCG18 regulates the viability, apoptosis, migration, invasion and epithelial-mesenchymal transition of papillary thyroid cancer cells via regulating the miR-106a-5p/PPP2R2A axis.
The incidence of papillary thyroid cancer (PTC) has experienced a rapid increase in recent years. Long non-coding RNA-homo sapiens HLA complex group (HCG) 18 plays a regulatory role in cancers, but its role in PTC remained unknown. This study determined the expressions of HCG18, microRNA (miR)-106a-5p, and protein phosphatase 2 regulatory subunit B alpha (PPP2R2A) in PTC tissues and cells by qRT-PCR. ENCORI predicted the targeting relation between HCG18 and miR-106a-5p. TargetScan v7.2 predicted the targeting relation between miR-106a-5p and PPP2R2A. Dual-luciferase reporter assay was performed to validate the two targeting relations. The viability, migration, and invasion of PTC cells were detected by Cell Counting Kit-8, wound healing assay, and Transwell assay, respectively. The expressions of matrix metalloproteinase 2 (MMP-2), MMP-9, E-cadherin, N-cadherin, and Vimentin in TPC-1 and MDA-T68 cells were assessed by qRT-PCR and Western blot. It was found that HCG18 was down-regulated in PTC. Overexpressing HCG18 suppressed viability, migration, and invasion, promoted apoptosis, and inhibited miR-106a-5p expression in PTC cells. HCG18 interacted with miR-106a-5p, the expression of which was upregulated in PTC. Upregulating miR-106a-5p expression by lentivirus infection promoted viability, migration and invasion and inhibited apoptosis of PTC cells, reversed the effect of HCG18 on the biological behaviors of PTC cells, and promoted the expressions of MMP-2, MMP-9, E-cadherin, and Vimentin and downregulated E-cadherin expression in PTC cells. PPP2R2A, a direct target of miR-106a-5p, was downregulated in PTC, and HCG18 promoted PPP2R2A expression in PTC cells by sponging miR-106a-5p. Furthermore, PPP2R2A reversed the effects of miR-106a-5p on PTC cells. In conclusion, HCG18 suppressed viability, migration, invasion and epithelial-mesenchymal transition and promoted apoptosis of PTC cells via regulating the miR-106a-5p/PPP2R2A axis.
Zhu Y
,Zhao J
,Tan L
,Lin S
,Long M
,Peng X
... -
《-》
MicroRNA-99a-3p/GRP94 axis affects metastatic progression of human papillary thyroid carcinoma by regulating ITGA2 expression and localization.
Papillary thyroid cancer (PTC) usually has favorable prognosis; however, distant metastasis is a leading cause of death associated with PTC. MicroRNA-99a-3p (miR-99a-3p) is a member of the miR-99 family that is shown to be a tumor suppressor in various human cancers including the anaplastic thyroid cancer, another type of thyroid cancer. The Cancer Genome Atlas database and our previous study reported that miR-99a-3p is downregulated in human PTC tissues as well as human papillary thyroid carcinoma B-CPAP and TPC-1 cell lines. However, its pathological role in PTC remains unclear, especially its impact on PTC metastasis. In the present study, the role of miR-99a-3p in PTC metastasis was molecularly evaluated in in vitro and in vivo models. Our functional study revealed that overexpressing miR-99a-3p significantly suppresses epithelial-mesenchymal transition (EMT) and anoikis resistance as well as migration and invasion of B-CPAP and TPC-1 cells. The mechanical study indicated that glucose-regulated protein 94 (GRP94) is the direct target of miR-99a-3p. Moreover, GRP94 overexpression reverses the inhibitory effect of miR-99a-3p on PTC metastasis. In addition, the miR-99a-3p/GRP94 axis exerts its effect via inhibiting the expression and cytoplasmic relocation of integrin 2α (ITGA2). Furthermore, in vivo experiments confirmed that miR-99a-3p significantly inhibits tumor growth and lung metastasis in PTC xenograft mice. Overall, our findings suggested that the miR-99a-3p/GRP94/ITGA2 axis may be a novel therapeutic target for the prevention of PTC metastasis.
Gao Y
,Pan Y
,Wang T
,Yao Y
,Yuan W
,Zhu X
,Wang K
... -
《-》