Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis.
Soil salinity restricts plant growth and productivity. Na(+) represents the major ion causing toxicity because it competes with K(+) for binding sites at the plasma membrane. Inoculation with arbuscular mycorrhizal fungi (AMF) can alleviate salt stress in the host plant through several mechanisms. These may include ion selection during the fungal uptake of nutrients from the soil or during transfer to the host plant. AM benefits could be enhanced when native AMF isolates are used. Thus, we investigated whether native AMF isolated from an area with problems of salinity and desertification can help maize plants to overcome the negative effects of salinity stress better than non-AM plants or plants inoculated with non-native AMF. Results showed that plants inoculated with two out the three native AMF had the highest shoot dry biomass at all salinity levels. Plants inoculated with the three native AMF showed significant increase of K(+) and reduced Na(+) accumulation as compared to non-mycorrhizal plants, concomitantly with higher K(+) /Na(+) ratios in their tissues. For the first time, these effects have been correlated with regulation of ZmAKT2, ZmSOS1 and ZmSKOR genes expression in the roots of maize, contributing to K(+) and Na(+) homeostasis in plants colonized by native AMF.
Estrada B
,Aroca R
,Maathuis FJ
,Barea JM
,Ruiz-Lozano JM
... -
《-》
Arbuscular mycorrhizal symbioses alleviating salt stress in maize is associated with a decline in root-to-leaf gradient of Na(+)/K(+) ratio.
Inoculation of arbuscular mycorrhizal (AM) fungi has the potential to alleviate salt stress in host plants through the mitigation of ionic imbalance. However, inoculation effects vary, and the underlying mechanisms remain unclear. Two maize genotypes (JD52, salt-tolerant with large root system, and FSY1, salt-sensitive with small root system) inoculated with or without AM fungus Funneliformis mosseae were grown in pots containing soil amended with 0 or 100 mM NaCl (incrementally added 32 days after sowing, DAS) in a greenhouse. Plants were assessed 59 DAS for plant growth, tissue Na+ and K+ contents, the expression of plant transporter genes responsible for Na+ and/or K+ uptake, translocation or compartmentation, and chloroplast ultrastructure alterations.
Under 100 mM NaCl, AM plants of both genotypes grew better with denser root systems than non-AM plants. Relative to non-AM plants, the accumulation of Na+ and K+ was decreased in AM plant shoots but increased in AM roots with a decrease in the shoot: root Na+ ratio particularly in FSY1, accompanied by differential regulation of ion transporter genes (i.e., ZmSOS1, ZmHKT1, and ZmNHX). This induced a relatively higher Na+ efflux (recirculating) rate than K+ in AM shoots while the converse outcoming (higher Na+ influx rate than K+) in AM roots. The higher K+: Na+ ratio in AM shoots contributed to the maintenance of structural and functional integrity of chloroplasts in mesophyll cells.
AM symbiosis improved maize salt tolerance by accelerating Na+ shoot-to-root translocation rate and mediating Na+/K+ distribution between shoots and roots.
Wang H
,An T
,Huang D
,Liu R
,Xu B
,Zhang S
,Deng X
,Siddique KHM
,Chen Y
... -
《BMC PLANT BIOLOGY》
Growth-promoting bacteria and arbuscular mycorrhizal fungus enhance maize tolerance to saline stress.
Climate change intensifies soil salinization and jeopardizes the development of crops worldwide. The accumulation of salts in plant tissue activates the defense system and triggers ethylene production thus restricting cell division. We hypothesize that the inoculation of plant growth-promoting bacteria (PGPB) producing ACC (1-aminocyclopropane-1-carboxylate) deaminase favors the development of arbuscular mycorrhizal fungi (AMF), promoting the growth of maize plants under saline stress. We investigated the efficacy of individual inoculation of PGPB, which produce ACC deaminase, as well as the co-inoculation of PGPB with Rhizophagus clarus on maize plant growth subjected to saline stress. The isolates were acquired from the bulk and rhizospheric soil of Mimosa bimucronata (DC.) Kuntze in a temporary pond located in Pernambuco State, Brazil. In the first greenhouse experiment, 10 halophilic PGPB were inoculated into maize at 0, 40 and 80 mM of NaCl, and in the second experiment, the PGPB that showed the best performance were co-inoculated with R. clarus in maize under the same conditions as in the first experiment. Individual PGPB inoculation benefited the number of leaves, stem diameter, root and shoot dry mass, and the photosynthetic pigments. Inoculation with PGPB 28-10 Pseudarthrobacter enclensis, 24-1 P. enclensis and 52 P. chlorophenolicus increased the chlorophyll a content by 138%, 171%, and 324% at 0, 40 and 80 mM NaCl, respectively, comparing to the non-inoculated control. We also highlight that the inoculation of PGPB 28-10, 28-7 Arthrobacter sp. and 52 increased the content of chlorophyll b by 72%, 98%, and 280% and carotenoids by 82%, 98%, and 290% at 0, 40 and 80 mM of NaCl, respectively. Co-inoculation with PGPB 28-7, 46-1 Leclercia tamurae, 70 Artrobacter sp., and 79-1 Micrococcus endophyticus significantly increased the rate of mycorrhizal colonization by roughly 50%. Furthermore, co-inoculation promoted a decrease in the accumulation of Na and K extracted from plant tissue, with an increase in salt concentration, from 40 mM to 80 mM, also favoring the establishment and development of R. clarus. In addition, co-inoculation of these PGPB with R. clarus promoted maize growth and increased plant biomass through osmoregulation and protection of the photosynthetic apparatus. The tripartite symbiosis (plant-fungus-bacterium) is likely to reprogram metabolic pathways that improve maize growth and crop yield, suggesting that the AMF-PGPB consortium can minimize damages caused by saline stress.
de Carvalho Neta SJ
,Araújo VLVP
,Fracetto FJC
,da Silva CCG
,de Souza ER
,Silva WR
,Lumini E
,Fracetto GGM
... -
《-》