Brain functional connectivity during storage based on resting state functional magnetic resonance imaging with synchronous urodynamic testing in healthy volunteers.
The aim of the study was to elucidate the correlation between spatially distinct brain areas with a full bladder from the perspective of functional connectivity using resting-state functional magnetic resonance imaging (rs-fMRI) with simultaneous urodynamic testing in healthy volunteers. The brain regions with full and empty bladders were reported via rs-fMRI using a 3 T magnetic resonance system. Then, we identified brain regions that are activated during bladder filling by calculating the amplitude of low-frequency fluctuation (ALFF) values using brain imaging software (DPABI and SPM8) and empirically derived six regions of interest (ROI) from analysis of activation were used as seeds for resting-state functional connectivity (rs-FC) analysis with the rest of the brain to examine differences in the two conditions. Statistical analysis was performed with a paired t-test and statistical significance was defined as a P < 0.01. Twenty-two healthy volunteers (11 men and 11 women) 35-64 years of age were enrolled. The rs-fMRI scans of 22 healthy volunteers were analyzed. After motion correction, two subjects were excluded. Meaningful data were obtained on 20 of these subjects. Compared with an empty bladder, functional connection enhancement was noted mainly in the right inferior orbitofrontal cortex and bilateral calcarine gyrus, the left lingual gyrus, left fusiform gyrus, left superior occipital gyrus, right insula, right inferior temporal gyrus, superior parietal lobe, left insula, right lingual gyrus, right fusiform gyrus, left parahippocampal gyrus, right inferior temporal gyrus, superior parietal lobe, left calcarine gyrus, bilateral lingual gyrus, prefrontal cortex, including the middle frontal gyrus and superior frontal gyrus, the right middle temporal gyrus, bilateral posterior cingulate cortex, and right precuneus. The decrease in functional connection was mainly located in the right inferior orbitofrontal cortex, prefrontal cortex, including the superior frontal gyrus, orbitofrontal cortex, and anterior cingulate cortex, the left inferior orbitofrontal cortex, right insula, middle occipital gyrus, angular gyrus, inferior frontal gyrus, right insula, middle temporal gyrus, inferior parietal lobe, middle occipital gyrus, supplementary motor area, superior frontal gyrus, left insula, bilateral posterior cingulate cortex, bilateral precuneus, middle occipital gyrus, and right middle temporal lobe. There were significant changes in the functional connectivity of the brain between full and empty bladders in healthy volunteers, which suggests that the central neural processes involved in storage needs brain areas with integrated control. These findings are strong evidence for physicians to consider brain responses in urine storage and offer the provision of some normative data.
Zhao L
,Liao L
,Gao Y
《-》
Altered brain spontaneous activity and connectivity network in irritable bowel syndrome patients: A resting-state fMRI study.
We aimed to provide additional evidence that brain functional alterations induced by IBS are not limited to local changes but also express at a level of functional integration within related brain regions involved in processing of visceral afferent information and somatic pain.
With fMRI data acquired from 21 IBS and healthy control (HC) subjects. We investigated the amplitude of low-frequency fluctuation (ALFF) and region of interest (ROI)-based functional connectivity (FC) to reveal the changes of the brain spontaneous activity and the interaction among different related regions.
IBS patients showed decreased ALFF values in the left superior frontal gyrus, right hippocampus, right middle frontal gyrus, bilateral postcentral, and right superior temporal pole, while increased ALFF values in the left median cingulate and left calcarine. There was significant correlation between ALFF values in the altered regions and duration of disease in IBS. FC analysis revealed the increased connectivity between cingulate and frontal cortex in IBS.
Our findings could provide both regional and brain connectivity spontaneous neuronal activity properties in IBS.
Our study may lead to a better understanding of intrinsic functional architecture of brain activity in IBS and highlight the potential for using the ALFF and FC metrics as a disease biomarker.
Ma X
,Li S
,Tian J
,Jiang G
,Wen H
,Wang T
,Fang J
,Zhan W
,Xu Y
... -
《-》
Precuneus-related regional and network functional deficits in social anxiety disorder: A resting-state functional MRI study.
Neuroimaging findings suggest that social anxiety disorder (SAD) may be correlated with changes in regional- or network-level brain function. However, few studies have explored alterations in intrinsic resting cerebral function in patients with SAD at both the regional and network levels, particularly focusing on the theory of mind (ToM)-related regions. This study was performed to investigate changes in neural activity and functional connectivity (FC) in ToM-related regions during the resting state in SAD patients and to determine how these alterations are correlated with the clinical symptoms of SAD.
Forty-three SAD patients and 43 matched healthy controls underwent resting-state functional magnetic resonance imaging (rsfMRI) scans. First, the amplitude of low-frequency fluctuation (ALFF) approach was used to explore regional activity. Then, the ToM-related region, i.e., the left precuneus, which showed altered ALFF values, was adopted as a seed for further FC analyses to assess network-level alterations in SAD. Between-group differences were compared using voxel-based two-sample t-tests (P<0.05, with Gaussian random field correction). Pearson's correlation analyses were performed to examine relationships between alterations in ALFF and FC and clinical symptoms.
Compared with the healthy controls, SAD patients showed decreased ALFF in the bilateral putamen (PUT) and left supplementary motor area (SMA) and increased ALFF in the right inferior parietal lobule (IPL), left precuneus and right cerebellar posterior lobe. Moreover, SAD patients exhibited lower connectivity between the left precuneus and the cerebellar posterior lobe, right inferior temporal gyrus (ITG), right parahippocampal gyrus (PHG) and left medial prefrontal cortex (mPFC). The altered ALFF values in the left precuneus and the hypoconnectivity between the left precuneus and left cerebellar posterior lobe were correlated with the patients' clinical symptoms (P<0.05).
The precuneus, a ToM-related region, was altered at both the regional and network level in patients with SAD. Pathological fear and avoidance in SAD were correlated with abnormal regional function in the precuneus, whereas depression and anxiety were primarily correlated with functional deficits in the precuneus-related network. The altered FC within the precuneus-cerebellar region may reflect an imbalance in the neuromodulation of anxiety and depressive symptoms in SAD. These findings may facilitate a greater understanding of potential SAD neural substrates and could be used to identify potential targets for further treatment.
Yuan C
,Zhu H
,Ren Z
,Yuan M
,Gao M
,Zhang Y
,Li Y
,Meng Y
,Gong Q
,Lui S
,Qiu C
,Zhang W
... -
《-》