Lung transplantation in the Lung Allocation Score era: Medium-term analysis from a single center.

来自 PUBMED

作者:

Iyengar AKwon OJSanaiha YEisenring CBiniwale RRoss DArdehali A

展开

摘要:

In 2005, the Lung Allocation Score (LAS) was implemented as the allocation system for lungs in the US. We sought to compare 5-year lung transplant outcomes before and after the institution of the LAS. Between 2000 and 2011, 501 adult patients were identified, with 132 from January 2000 to April 2005 (Pre-LAS era) and 369 from May 2005 to December 2011 (Post-LAS era). Kruskal-Wallis or chi-squared test was used to determine significance between groups. Survival was censored at 5 years. Overall, the post-LAS era was associated with more restrictive lung disease, higher LAS scores, shorter wait-list times, more preoperative immunosuppression, and more single lung transplantation. In addition, post-LAS patients had higher O2 requirements with greater preoperative pulmonary impairment. Postoperatively, 30-day mortality improved in post-LAS era (1.6% vs 5.3%, P = .048). During the pre- and post-LAS eras, 5-year survival was 52.3% and 55.3%, respectively (P = .414). The adjusted risk of mortality was not different in the post-LAS era (P = .139). Freedom from chronic lung allograft dysfunction was significantly higher in the post-LAS era (P = .002). In this single-center report, implementation of the LAS score has led to allocation to sicker patients without decrement in short- or medium-term outcomes. Freedom from CLAD at 5 years is improving after LAS implementation.

收起

展开

DOI:

10.1111/ctr.13298

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(168)

参考文献(0)

引证文献(2)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读