Pulmonary function tests as outcomes for systemic sclerosis interstitial lung disease.

来自 PUBMED

作者:

Caron MHoa SHudson MSchwartzman KSteele R

展开

摘要:

Interstitial lung disease (ILD) is the leading cause of morbidity and mortality in systemic sclerosis (SSc). We performed a systematic review to characterise the use and validation of pulmonary function tests (PFTs) as surrogate markers for systemic sclerosis-associated interstitial lung disease (SSc-ILD) progression.Five electronic databases were searched to identify all relevant studies. Included studies either used at least one PFT measure as a longitudinal outcome for SSc-ILD progression (i.e. outcome studies) and/or reported at least one classical measure of validity for the PFTs in SSc-ILD (i.e. validation studies).This systematic review included 169 outcome studies and 50 validation studies. Diffusing capacity of the lung for carbon monoxide (DLCO) was cumulatively the most commonly used outcome until 2010 when it was surpassed by forced vital capacity (FVC). FVC (% predicted) was the primary endpoint in 70.4% of studies, compared to 11.3% for % predicted DLCO Only five studies specifically aimed to validate the PFTs: two concluded that DLCO was the best measure of SSc-ILD extent, while the others did not favour any PFT. These studies also showed respectable validity measures for total lung capacity (TLC).Despite the current preference for FVC, available evidence suggests that DLCO and TLC should not yet be discounted as potential surrogate markers for SSc-ILD progression.

收起

展开

DOI:

10.1183/16000617.0102-2017

被引量:

37

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(197)

参考文献(171)

引证文献(37)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读