NiO Nanoparticles Anchored on Phosphorus-Doped α-Fe(2) O(3) Nanoarrays: An Efficient Hole Extraction p-n Heterojunction Photoanode for Water Oxidation.
摘要:
The photoelectrochemical (PEC) water-splitting efficiency of a hematite-based photoanode is still far from the theoretical value due to its poor surface reaction kinetics and high density of surface trapping states. To solve these drawbacks, a photoanode consisting of NiO nanoparticles anchored on a gradient phosphorus-doped α-Fe2 O3 nanorod (NR) array (NiO/P-α-Fe2 O3 ) was fabricated to achieve optimal light absorption and charge separation, as well as rapid surface reaction kinetics. Specifically, a photoanode with the NR array structure allowed a high mass-transport rate to be achieved, while phosphorus doping effectively decreased the number of surface trapping sites and improved the electrical conductivity of α-Fe2 O3 . Furthermore, the p-n junction that forms between NiO and P-α-Fe2 O3 can further improve the PEC performance due to efficient hole extraction and the water oxidization catalytic activity of NiO. Consequently, the NiO/P-α-Fe2 O3 NR photoanode produced a high photocurrent density of 2.08 mA cm-2 at 1.23 V versus a reversible hydrogen electrode and a 110 mV cathodic shift of the onset potential. This rational design of structure offers a new perspective in exploring high-performance PEC photoanodes.
收起
展开
DOI:
10.1002/cssc.201800571
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(255)
参考文献(0)
引证文献(1)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无