Control of xylem Na(+) loading and transport to the shoot in rice and barley as a determinant of differential salinity stress tolerance.
摘要:
Control of xylem Na+ loading has often been named as the essential component of salinity tolerance mechanism. However, it is less clear to what extent the difference in this trait may determine differential salinity tolerance between species. In this study, barley (Hordeum vulgare L. cv. CM72) and rice (Oryza sativa L. cv. Dongjin) plants were grown under two levels of salinity. Na+ and K+ concentrations in the xylem sap, and shoot and root tissues were measured at different time points after stress onset. Salt-exposed rice plants prevented xylem Na+ loading for several days, but failed to control this process in the longer term, ultimately resulting in a massive Na+ shoot loading. Barley plants quickly increased xylem Na+ concentration and its delivery to the shoot (most likely for the purpose of osmotic adjustment) but were able to reduce this process later on, keeping most of accumulated Na+ in the root, thus maintaining non-toxic shoot Na+ level. Rice plants increased shoot K+ concentration, while barley plants maintained higher root K+ concentration. Control of xylem Na+ loading is remarkably different between rice and barley; this difference may differentiate the extent of the salinity tolerance between species. This trait should be investigated in more detail to be used in the breeding programs aimed to improve salinity tolerance in crops.
收起
展开
DOI:
10.1111/ppl.12758
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(268)
参考文献(0)
引证文献(22)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无