Concentrations and variability of organophosphate esters, halogenated flame retardants, and polybrominated diphenyl ethers in indoor and outdoor air in Stockholm, Sweden.

来自 PUBMED

作者:

Wong Fde Wit CANewton SR

展开

摘要:

We investigated the concentrations and temporal variability of organophospate esters (OPEs), halogenated flame retardants (HFRs) and polybrominated diphenyl ethers (PBDEs) in indoor and outdoor urban air in Stockholm, Sweden over one year (2014-2015) period. The median concentrations of the three target chemical groups (OPEs, HFRs, PBDEs) were 1-2 orders of magnitude higher in indoor air than outdoor urban air. OPEs were the most abundant target FRs with median concentrations in indoor (Σ10OPE = 340 000 pg/m3) and outdoor urban (Σ10OPEs = 3100 pg/m3) air, being 3 orders of magnitude greater than for HFRs in indoor (Σ15HFRs = 120 pg/m3) and outdoor urban (Σ15HFRs = 1.6 pg/m3) air. In indoor air, PBDE concentrations (Σ17PBDEs = 33 pg/m3) were lower than for the HFRs, but in outdoor urban air, concentrations (Σ17PBDEs = 1.1 pg/m3) were similar to HFRs. The most abundant OPEs in both the indoor and outdoor urban air were tris(2-butoxyethyl)phosphate (TBOEP), tris(chloroisopropyl)phosphate (TCIPP), tris(2-chloroethyl)phosphate (TCEP), tri-n-butyl-phosphate (TnBP), triphenyl phosphate (TPhP) and tris(1,3-dichloroisopropyl)phosphate (TDCIPP). TCIPP in indoor air was found in the highest concentrations and showed the greatest temporal variability, which ranged from 85 000 to 1 900 000 pg/m3 during the one-year sampling period. We speculate that activities in the building, e.g. floor cleaning, polishing, construction, introduction of new electronics and changes in ventilation rate could explain its variation. Some OPEs (TnBP, TCEP, TCIPP, TDCIPP and TPhP), HFRs/PBDEs (pentabromotoluene, 2, 3-dibromopropyl 2, 4, 6-tribromophenyl ether, hexabromobenzene, BDE-28, -47, and -99) in outdoor urban air showed seasonality, with increased concentrations during the warm period (p < 0.05, Pearson's r ranged from -0.45 to -0.91). The observed seasonality for OPEs was probably due to changes in primary emission, and those for the HFRs and PBDEs was likely due to re-volatilization from contaminated surfaces.

收起

展开

DOI:

10.1016/j.envpol.2018.04.086

被引量:

13

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(882)

参考文献(0)

引证文献(13)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读