Effects of processing conditions on the texture and rheological properties of model acid gels and cream cheese.

来自 PUBMED

作者:

Brighenti MGovindasamy-Lucey SJaeggi JJJohnson MELucey JA

展开

摘要:

Manufacture of cream cheese involves the formation of an initial acid-induced gel made from high-fat milk, followed by a series of processing steps including shearing, heating, and dewatering that complete the conversion of the acid gel into a complex cheese product. We investigated 2 critical parameters for their effect on the initial gel: homogenization pressure (HP) of the high-fat cheese milk, and fermentation temperature (FT). The impact of a low (10 MPa) and high (25 MPa) HP, and low (20°C) and high (26°C) FT were investigated for their effects on rheological and textural properties of acid-induced gels. Intact acid gels were sheared and heated to 80°C, and then their rheological properties were analyzed to help understand the effect of shearing/heating processes on the gel characteristics. The effect of HP on fat globule size distribution and the amount of protein not involved in emulsion droplets (i.e., in the bulk phase) were also studied. For cream cheese trials, a central composite experimental design was used to explore the effect of these 2 parameters (HP and FT) on the texture, rheology, and sensory properties of experimentally manufactured cream cheese. Storage modulus (G') and hardness values of cream cheeses were obtained from small amplitude oscillatory rheology tests and texture profile analysis, respectively. Quantitative spectrum descriptive sensory analysis was also performed. Consistency of acid gels (measured using a penetration test) increased with an increase in FT and with an increase in HP. Although stiffer acid-induced gels were formed at high FT, after the heating and shearing processes the apparent viscosity of the samples formed at high FT was lower than those formed at low FT. For the cream cheeses, significant prediction models were obtained for several rheological and textural attributes. The G' values at 8°C, instrumental hardness, and sensory firmness attributes were significantly correlated (r > 0.84); all these attributes significantly decreased with an increase in FT, and HP was not a significant parameter in the prediction models developed for these attributes. Significant interactions were observed between the HP and FT terms for these prediction models. Higher HP increased the amount of protein adsorbed at interface of fat globules but decreased bulk phase protein content (which may be important for crosslinking this gelled emulsion system). At higher FT temperature, coarser gel networks were likely formed. The combined effect of a coarser acid gel network at high FT, and less bulk phase casein available for crosslinking the acidified emulsion gel with an increase in HP, could have contributed to the lower stiffness/firmness observed in cream cheese made under conditions of both high FT and high HP. Stickiness of cream cheese greatly increased under conditions of high FT and high HP, whereas the sensory attributes cohesiveness of mass and difficulty to dissolve decreased. This study helped to better understand the complex relationships between the initial acid-induced gel phase and properties of the (final) cream cheese.

收起

展开

DOI:

10.3168/jds.2018-14391

被引量:

7

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(1123)

参考文献(0)

引证文献(7)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读