Isorhamnetin protects against hypoxia/reoxygenation-induced injure by attenuating apoptosis and oxidative stress in H9c2 cardiomyocytes.

来自 PUBMED

作者:

Zhao TTYang TLGong LWu P

展开

摘要:

To unveil the possible protective role of isorhamnetin, an immediate 3'-O-methylated metabolite of quercetin, in cardiomyocyte under hypoxia/reoxygenation (H/R) condition and the underlying mechanisms involved, H9c2 cardiomyocytes were exposed to the vehicle or H/R for 6 h (2 h of hypoxia following by 4 h of reoxygenation) with isorhamnetin (0, 3, 6, 12, 25, 50 μM for 4 h prior to H/R exposure). Apoptosis was evaluated by TUNEL staining, flow cytometry analysis and western blot assay for cleaved caspase-3. Myocardial injure in vivo was determined by infarct size using TTC staining, histological damage using H&E staining and myocardial apoptosis. Here, we found that isorhamnetin dose-dependently protected H9c2 cardiomyocytes against H/R-induced injure, as evidenced by the reduction in lactate dehydrogenase (LDH) levels, increases in cell viability, superoxide dismutase (SOD) and catalase (CAT) activity, with the maximal effects at 25 μΜ. In addition, isorhamnetin treatment significantly inhibited apoptosis in H/R-induced H9c2 cardiomyocytes and ameliorated H/R-induced myocardial injure in vivo, concomitant with the upregulation of sirtuin 1 (SIRT1) expression. Mechanism studies demonstrated that isorhamnetin pretreatment remarkably abolished H/R-induced downregulation of Nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expressions and upregulation of NADPH oxidase-2/4 (NOX-2/4) expressions in cardiomyocytes. However, SIRT1 inhibition (Sirtinol) not only inhibited isorhamnetin-induced Nrf2/HO-1 upregulation and NOX-2/4 downregulation, but also alleviated its anti-apoptotic effects. Taken together, these data indicate that isorhamnetin can exhibit positive effect on H/R-induced injure by attenuating apoptosis and oxidative stress in H9c2 cardiomyocytes, which is partly attributable to the upregulation of SIRT1 and Nrf2/HO-1-mediated antioxidant signaling pathway.

收起

展开

DOI:

10.1016/j.gene.2018.05.009

被引量:

19

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(699)

参考文献(0)

引证文献(19)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读